

Communication **Assembly and Annotation of the Complete Genome Sequence of the** *Paenibacillus* **Bacteriophage phJNUCC32**

Yang Xu, Xuhui Liang and Chang-Gu Hyun [*](https://orcid.org/0000-0002-3000-7989)

Department of Beauty and Cosmetology, Jeju Inside Agency and Cosmetic Science Center, Jeju National University, Jeju 63243, Republic of Korea; iamxuyang1990@gmail.com (Y.X.); lxh03036@naver.com (X.L.)

***** Correspondence: cghyun@jejunu.ac.kr; Tel.: +82-64-754-1803

Abstract: A potential biocontrol agent for American foulbrood (AFB), the *Paenibacillus* bacteriophage phJNUCC32, was isolated from Baengnokdam in Halla Mountain. This study aimed to investigate its genomic characteristics through whole-genome sequencing. The genome of phJNUCC32 was found to be 62,871 base pairs in length, with a $G + C$ content of 51.98%. Phylogenetic analysis classified phJNUCC32 within the unclassified Caudoviricetes bacteriophage category. The genome prediction confirmed the absence of virulence factors and antibiotic-resistance genes, ensuring its genetic safety. A total of 63 coding DNA sequences were identified, revealing a modular arrangement. Notably, the annotation of gene function indicates that phJNUCC32 harbors the holin/lysin system, suggesting significant potential for controlling bacterial infections in AFB and agriculture.

Keywords: *Paenibacillus* bacteriophage; whole-genome sequencing; American foulbrood; holin/lysin system

1. Introduction

Bacteriophages, viruses infecting various microorganisms, were discovered by Twort and d'Herelle in 1915 and 1917 [\[1\]](#page-7-0). With unique host specificity, they combat bacterial infections and are extensively used in medicine, dentistry, and agriculture. Molecular biology advancements have deepened our understanding of bacteriophages, aiding in their application as antibiotic alternatives. Leveraging their specificity, self-replication, and low cost, they are widely employed in treating infections in humans, animals, plants, and environmental decontamination.

Some species, such as *Paenibacillus larvae*, *Paenibacillus apiarius*, and *Paenibacillus glabratella*, are pathogens to honeybees and other invertebrates, with *P. larvae* causing lethal intestinal infections [\[2,](#page-7-1)[3\]](#page-7-2). *P. larvae* is a Gram-positive bacterium responsible for inducing American foulbrood, a significant affliction in apiculture [\[4\]](#page-7-3). AFB detrimentally affects honeybee larvae, exacerbates colony collapse disorder, and diminishes agricultural productivity. In particular, strains of *P. larvae* are increasingly exhibiting resistance to antibiotics [\[5\]](#page-7-4); bacteriophages targeting and lysing *P. larvae* present a potentially promising avenue for therapeutic intervention. In summary, reported *Paenibacillus* bacteriophages include the *P. larvae* phage phiIBB_Pl23 [\[6\]](#page-7-5); five *P. larvae* bacteriophages from soil [\[7\]](#page-7-6); nine *P. larvae* bacteriophages from soil, propolis, and infected bees [\[8\]](#page-7-7); and eighteen *P. larvae* phages from the western United States [\[9\]](#page-7-8), etc. The results of the genomic analysis of 48 *P. larvae* bacteriophages reveal that all phage genomes display a conserved N-acetylmuramoyl-l-alanine amidase, serving as an endolysin [\[10\]](#page-7-9).

The holin/lysin system in bacteriophages inhibits the impact of *P. larvae* on honeybee larvae through a collaborative mechanism [\[11\]](#page-7-10). Endolysin, primarily sourced from phages targeting Gram-positive bacteria [\[12\]](#page-7-11), serves as a key component of the holin/lysin system; it participates in the bacteriophage's infection and cell lysis process by regulating the

Citation: Xu, Y.; Liang, X.; Hyun, C.-G. Assembly and Annotation of the Complete Genome Sequence of the *Paenibacillus* Bacteriophage phJNUCC32. *Acta Microbiol. Hell.* **2024**, *69*, 144–152. [https://doi.org/](https://doi.org/10.3390/amh69030014) [10.3390/amh69030014](https://doi.org/10.3390/amh69030014)

Academic Editor: Athanassios Tsakris

Received: 19 May 2024 Revised: 17 June 2024 Accepted: 25 June 2024 Published: 5 July 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license [\(https://](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) $4.0/$).

localization of endolysins to the specific cleavage sites of "cross-links" within the peptidoglycan (PG) layer of bacterial cell walls through the accumulation of holins and creation of lesions in the cytoplasmic membrane, ultimately triggering host cell lysis at a specific time point [\[13](#page-7-12)[–15\]](#page-8-0).

In previous studies, the majority of bacteriophages utilize endolysin to enzymatically degrade the PG layer of the host bacterium, exhibiting anti-biofilm properties. This includes the natural lysis of *Salmonella* enteritidis by the endolysin of the bacteriophage vB_Sal-S-S10 [\[16\]](#page-8-1), the endolysin Ply113 acting as a potent antibacterial agent against polymicrobial biofilms formed by *enterococci* and *Staphylococcus aureus* [\[17\]](#page-8-2), and the endolysin from *Staphylococcus aureus* bacteriophage 52 showing anti-biofilm and broad antibacterial activity against Gram-positive bacteria [\[18\]](#page-8-3). Additionally, endolysins such as LysAB1245 targeting different capsular types associated with *Acinetobacter* exhibit extended lytic activity [\[19\]](#page-8-4), while endolysins LysCPD2 and LysCPQ7 act as biocontrol agents against *Clostridium perfringens* [\[20,](#page-8-5)[21\]](#page-8-6), etc.

The holin/lysin system offers a sustainable and environmentally friendly approach to selectively eradicate target pathogens without harming beneficial microorganisms [\[22\]](#page-8-7). Operating through physical mechanisms that disrupt bacterial cell membranes and walls rather than chemical agents, it minimizes the likelihood of inducing resistance, making it promising for controlling drug-resistant pathogens [\[23\]](#page-8-8). Its mechanism of action leads to rapid lysis and dissolution of bacterial cells, releasing numerous bacteriophage particles, thus swiftly reducing pathogen populations and aiding in disease control [\[24\]](#page-8-9). Compared to chemical pesticides, it reduces reliance on chemical substances and minimizes environmental pollution, aligning with principles of sustainable agriculture and environmental protection.

This study isolated a potential strain, *Paenibacillus* bacteriophage phJNUCC32, from Baengnokdam in Halla Mountain and conducted whole-genome sequencing. Through sequence comparisons, gene function annotation of the bacteriophage, as well as predictions of virulence factors and antibiotic-resistance genes, were conducted, resulting in the identification of genes with potential therapeutic effects against American foulbrood.

2. Materials and Methods

2.1. Bacterial Isolation

The Paenibacillus bacteriophage phJNUCC32 was isolated from Baengnokdam, Mt. Halla, South Korea, in September 2019. Soil samples (0.5 g) were suspended in 0.45 mL of 0.1% tris-buffer and shaken (180 rpm, 30 °C, 1 h). After serial dilution (10⁻⁵ to 10⁻⁹), 100 µL of the suspension was spread onto MRS medium (pH 6.5). Routine culture involved aerobic growth on LB solid/liquid medium at 30 °C for 1 day, with storage in 20% glycerol at −80 ◦C [\[25\]](#page-8-10).

2.2. Sequencing and De Novo Assembly

The strain phJNUCC32's DNA was extracted using a QIAGEN genomic-tip and sequenced with PacBio RSII and Illumina at Macrogen, Inc. (Seoul, Republic of Korea). K-mer analysis was performed to estimate the genome size of the sample. The k-mer distribution of the genome was analyzed using Jellyfish (v2.2.10), and GenomeScope 2.0. HGAP (v3.0) first assembled PacBio long reads. Then, Illumina reads were used to refine genome sequence accuracy with Pilon (v1.21). Finally, subreads were mapped against contigs to generate consensus sequences with coverage depth data.

2.3. Genome Annotation and Phylogenetic Tree

We used the online tool PHASTEST (PHAge Search Tool with Enhanced Sequence Translation) [\(https://phastest.ca/,](https://phastest.ca/) accessed on 5 March 2024) to predict functional annotations of the genome of the bacteriophage phJNUCC32. Antibiotic-resistance gene prediction was performed by submitting the genome of the bacteriophage phJNUCC32 to the online database [\(http://arpcard.mcmaster.ca,](http://arpcard.mcmaster.ca) accessed on 21 March 2024). Virulence gene prediction was conducted by submitting the genome of the bacteriophage phJNUCC32 to the online tool [\(http://www.mgc.ac.cn/VFs/search_VFs.htm,](http://www.mgc.ac.cn/VFs/search_VFs.htm) accessed on 21 March 2024). For the construction of phylogenetic trees, we employed full-length amino acid sequences of the terminase large subunit (TerL). Sequence alignment was performed using MAFFT. Sequence trimming was performed using trimAl, with commands to retain conserved regions. Phylogenetic tree construction was performed using IQ-TREE 2.0, which automatically determined the optimal model, utilizing the maximum likelihood method and 1000 bootstrap replicates. [\[26\]](#page-8-11). The resulting phylogenetic trees were visualized using TVBOT [\(https://www.chiplot.online/tvbot.html,](https://www.chiplot.online/tvbot.html) accessed on 7 March 2024). the online database (http://arpcard.mcmaster.com/arpcard.mcmaster.com/arpcard.mcmaster.com/arpcard.mcmaster.co $\sum_{i=1}^{n}$

3. Results and Discussion

3.1. Genome Characteristics of the Paenibacillus Bacteriophage phJNUCC32

3.1. Jellyfish generated a 21-mer count histogram from a subset of short DNA reads. GenomeScope then used this histogram to estimate genome size, k-mer coverage, and heterozygosity. The graph was plotted with the coverage and frequency of k-mers. The genome size can be estimated using total k-mer number and volume peak (Figure [1\)](#page-2-0). The genome of the phage JNUCC32 has a size of 62,871 base pairs, with a $G + C$ content of 51.98%, a k-mer coverage of 33.9, and low heterozygosity of 0.022% (below 0.05%). Genome scanning identified 63 coding DNA sequences (CDSs) in the genome, with no RNA sequences detected. The genomic features of the phage JNUCC32 are summarized in Figure [2.](#page-3-0) The circular genome map was generated using Prokka (v1.12b). The draft genome sequence of the phage JNUCC32 has been submitted and deposited in the NCBI GenBank database under the accession ID CP062261. penome Scope then used this histogram to estimate genome size, k-me

GenomeScope Profile

Figure 1. K-mer analysis of the genome. **Figure 1.** K-mer analysis of the genome.

3.2. Phylogenetic Analysis

To further elucidate the evolutionary relationships among bacteriophages, a phylogenetic tree was constructed by comparing conserved and evolutionarily significant sequences within these viruses. The sequence of the terminase large subunit (ORF2), a conserved region within bacteriophages, was utilized for this purpose, allowing for comparison of genetic relationships among different bacteriophages. As shown in Figure [3,](#page-3-1) phylogenetic analysis of the terminase large subunit of the *Paenibacillus* phage phJNUCC32 reveals a close genetic relationship with the *Bacillus* phage phBC6A51. This proximity within the evolutionary tree suggests their classification within the unclassified Caudoviricetes bacteriophage

category. In summary, phylogenetic linkages provide a framework for understanding the evolutionary history, taxonomy, and functional diversity of bacteriophages. These insights are crucial for advancing phage research, including phage therapy, biotechnology, and microbial ecology.

Figure 2. Circular genome map of the phJNUCC32 chromosome. The genomic characteristics are **Figure 2.** Circular genome map of the phJNUCC32 chromosome. The genomic characteristics are illustrated from the outer to the central region, including forward-strand CDS, reverse-strand CDS, illustrated from the outer to the central region, including forward-strand $C\!D\!S$, reverse-strand $C\!D\!S$, GC content, and GC skew. Forward CDS: Regions containing forward CDS are represented, with non-CDS regions indicated as blank. Reverse CDS: Areas with reverse CDS are presented, and age are depicted in an exterior light green peak. General peaks. General peak in the color of C = construction non-CDS regions are denoted as blank. GC content: Regions with a higher GC percentage than the average are depicted in an exterior light green peak. GC skew: Calculated by (G − C)/(G + C), a positive value indicates G dominance, while a negative value indicates C dominance. The exterior *3.2. Phylogenetic Analysis* regions with higher C content. light green peak signifies regions with higher G content, while the interior lavender peak represents

Figure 3. Maximum likelihood phylogeny of the phage terminase large subunit (TerL) proteins of **Figure 3.** Maximum likelihood phylogeny of the phage terminase large subunit (TerL) proteins of the the *Paenibacillus* bacteriophage phJNUCC32. *Paenibacillus* bacteriophage phJNUCC32.

In the *Paenibacillus* bacteriophage phJNUCC32 genome, a total of 97 open reading frames (ORFs) have been identified. Of these, 63 are CDSs. Among the CDSs, 45 are predicted to encode proteins with known functions, constituting 71.4% of the total CDSs. (Figure [4,](#page-4-0) Table [1\)](#page-6-0). The gene distribution of phJNUCC32 demonstrates a characteristic modular pattern, comprising various functional modules such as hypothetical protein, portal protein, head protein, tail protein, phage-like protein, plate protein, fiber protein, nolin, regulatory protein, replication protein, DNA helicase, crossover junction protein, and endonuclease.

Figure 4. Gene functional annotation circle plot of the *Paenibacillus* phage phJNUCC32. **Figure 4.** Gene functional annotation circle plot of the *Paenibacillus* phage phJNUCC32.

Table 1. General features of the CDSs predicted from the genome of the *Paenibacillus* phage **Table 1.** General features of the CDSs predicted from the genome of the *Paenibacillus* phage phJNUCC32. phJNUCC32.

Table 1. *Cont.*

Table 1. *Cont.*

ORF2 in the DNA packaging module encodes the large subunit of the terminase enzyme. Terminase enzymes are essential for packaging phage DNA into the capsid during virion assembly, ensuring proper encapsulation of genetic material. These proteins play a critical role in phage replication and propagation [\[27\]](#page-8-12).

Portal proteins are encoded by ORFs 3, 20, and 55. Portal proteins create a channel in the capsid for phage DNA injection into host cells during infection [\[28\]](#page-8-13). They facilitate early infection stages by aiding phage DNA entry into the host cell cytoplasm. Portal proteins are vital for phage infectivity, often conserved among different phage species. They are promising targets for phage therapy and genetic engineering.

Tail proteins are represented by ORFs 12 to 15. Tail proteins attach phage to host cell surfaces, recognize host receptors, and inject phage DNA into host cells [\[29\]](#page-8-14). They facilitate phage adsorption and penetration, initiating infection. Tail proteins exhibit diversity across phage types, reflecting host recognition specificity and range determination.

ORF22 encodes thiosulfate sulfurtransferase (TST), also known as rhodanese, pivotal in microbial metabolism, detoxifying thiosulfate by binding it with organic toxins, aiding their elimination [\[30\]](#page-8-15). TST also balances sulfur cycling by transferring sulfur atoms and may combat oxidative stress by neutralizing oxygen radicals [\[31\]](#page-8-16). In microorganisms, TST ensures detoxification, metabolic balance, antioxidation, and energy metabolism, vital for survival and adaptation.

ORF24 is predicted to encode the endolysin gene based on bioinformatic analysis, indicating that nucleotides 21,003–21,692 (690 bp) of ORF24 encoded amino acid endolysin and that the protein belongs to the N-acetylmuramoyl-L-alanine amidase CwlA family. Endolysins are phage-encoded peptidoglycan hydrolases (PGHs), also known as internal lysins or bacterial lysozymes. They exhibit high specificity and are involved in bacterial lysis at the end of the infection cycle. The bacteriophage perforin forms pores on the cell membrane, allowing endolysin to reach PG targets on the bacterial cell wall and cleave it hydrolytically, ultimately leading to bacterial lysis and death [\[32\]](#page-8-17).

ORF25 of phJNUCC32 is annotated as the holin gene. Holin is a small transmembrane protein encoded by bacteriophages. Upon bacteriophage infection, holin forms non-specific pores on the host cell membrane within a specific time frame, thereby controlling the duration of the bacteriophage infection cycle and lysing the host cell at the optimal time point. Due to its role in regulating the bacteriophage infection cycle, holin is also referred to as the "clock" controlling bacteriophage infection [\[33\]](#page-8-18).

ORF49 is predicted to encode the HNH endonuclease (H: Histidine, N: Asparagine, and H: Histidine), which participates in mediating the insertion of the bacteriophage genome into the host genome. The endonuclease can cleave specific sites in the host bacterium's DNA, followed by homologous recombination between the bacteriophage's single-stranded DNA and the host genome DNA, facilitated by host nuclease inhibitory proteins [\[34](#page-8-19)[,35\]](#page-8-20).

No known antibiotic-resistance genes or virulence factors were predicted in phJNUCC32, indicating the phage's safety at the genetic level.

4. Conclusions

In this study, we isolated and characterized the *Paenibacillus* bacteriophage phJNUCC32, which shows promising biocontrol activity. Whole-genome sequencing and functional analysis revealed the presence of the holin/lysin system, enabling selective infection and eradication of *P*. larvae, effectively controlling the spread of American foulbrood while preserving beneficial microorganisms, thereby contributing to ecosystem balance and biodiversity conservation. Moreover, phJNUCC32 exhibited genetic safety by lacking virulence factors and antibiotic-resistance genes, thus mitigating potential harm to the environment and ecosystems. Overall, the bacteriophage phJNUCC32 demonstrates significant potential for biocontrol and ecological safety, offering a novel approach for sustainable bee health management and beekeeping industry development.

Author Contributions: Conceptualization, C.-G.H. and X.L.; methodology, Y.X. and X.L.; software, Y.X. and X.L.; writing—original draft preparation, Y.X. and X.L.; writing—review and editing, C.-G.H.; supervision, C.-G.H.; project administration, C.-G.H.; funding acquisition, C.-G.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea funded by the Ministry of Education (2023RIS-009).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Duckworth, D.H. Who discovered bacteriophage? *Bacteriol. Rev.* **1976**, *40*, 793–802. [\[CrossRef\]](https://doi.org/10.1128/br.40.4.793-802.1976) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/795414)
- 2. Gkitsaki, I.; Papachristoforou, A.; Michailidou, S. The transmittable through stinging microbiota differs between honeybees and wasps: A potentially greater microbial risk of the wasp sting for humans. *Int. Microbiol.* **2023**, *26*, 663–674. [\[CrossRef\]](https://doi.org/10.1007/s10123-023-00332-6) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/36752864)
- 3. Rampacci, E.; Sforna, M.; Dentini, A. *Paenibacillus amylolyticus* osteomyelitis in a Poodle dog: Case report and literature review. *J. Vet. Diagn. Investig.* **2022**, *34*, 703–708. [\[CrossRef\]](https://doi.org/10.1177/10406387221100996) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/35673775)
- 4. Genersch, E.; Forsgren, E.; Pentikäinen, J. Reclassification of *Paenibacillus larvae* subsp. Pulvifaciens and *Paenibacillus larvae* subsp. larvae as *Paenibacillus* larvae without subspecies differentiation. *Int. J. Syst. Evol. Microbiol.* **2006**, *56*, 501–511. [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/16514018)
- 5. Evans, J.D. Diverse origins of tetracycline resistance in the honey bee bacterial pathogen *Paenibacillus larvae*. *J. Invertebr. Pathol.* **2003**, *83*, 46–50. [\[CrossRef\]](https://doi.org/10.1016/S0022-2011(03)00039-9) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/12725811)
- 6. Oliveira, A.; Melo, L.D.R.; Kropinski, A.M. Complete genome sequence of the broad-host-range *Paenibacillus larvae* phage phiIBB_Pl23. *Genome Announc.* **2013**, *1*, 00438-13. [\[CrossRef\]](https://doi.org/10.1128/genomeA.00438-13) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/24009112)
- 7. Sheflo, M.A.; Gardner, A.V.; Merrill, B.D. Complete genome sequences of five *Paenibacillus larvae* bacteriophages. *Genome Announc.* **2013**, *1*, 00668-13. [\[CrossRef\]](https://doi.org/10.1128/genomeA.00668-13) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/24233582)
- 8. Philippos, K.T.; Diane, G.Y.; Andrew, K. Complete Genome Sequences of Nine Phages Capable of Infecting *Paenibacillus larvae*, the Causative Agent of American Foulbrood Disease in Honeybees. *ASM Sci. J.* **2015**, *3*, e01120-15.
- 9. Merrill, B.D.; Fajardo, C.P.; Hilton, J.A. Complete genome sequences of 18 *Paenibacillus larvae* phages from the Western United States. *Microbiol. Resour. Announc.* **2018**, *7*, 00966-18. [\[CrossRef\]](https://doi.org/10.1128/MRA.00966-18) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/30533693)
- 10. Stamereilers, C.; Fajardo, C.P.; Walker, J.K. Genomic analysis of 48 *Paenibacillus larvae* bacteriophages. *Viruses* **2018**, *10*, 377. [\[CrossRef\]](https://doi.org/10.3390/v10070377)
- 11. Tsourkas, P.K. *Paenibacillus larvae* bacteriophages: Obscure past, promising future. *Microb. Genom.* **2020**, *6*, e000329. [\[CrossRef\]](https://doi.org/10.1099/mgen.0.000329) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/32111267)
- 12. Oliveira, H.; São José, C.; Azeredo, J. Phage-derived peptidoglycan degrading enzymes: Challenges and future prospects for in vivo therapy. *Viruses* **2018**, *10*, 292. [\[CrossRef\]](https://doi.org/10.3390/v10060292) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/29844287)
- 13. Shi, Y.; Yan, Y.; Ji, W. Characterization and determination of holin protein of *Streptococcus suis* bacteriophage SMP in heterologous host. *Virol. J.* **2012**, *9*, 1–11. [\[CrossRef\]](https://doi.org/10.1186/1743-422X-9-70)
- 14. Hua, Y.; An, X.; Pei, G. Characterization of the morphology and genome of an *Escherichia coli* podovirus. *Arch. Virol.* **2014**, *159*, 3249–3256. [\[CrossRef\]](https://doi.org/10.1007/s00705-014-2189-x)
- 15. Schmelcher, M.; Donovan, D.M.; Loessner, M.J. Bacteriophage endolysins as novel antimicrobials. *Future Microbiol.* **2012**, *7*, 1147–1171. [\[CrossRef\]](https://doi.org/10.2217/fmb.12.97) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/23030422)
- 16. Wang, X.; Han, L.; Rong, J. Endolysins of bacteriophage vB_Sal-S-S10 can naturally lyse *Salmonella enteritidis*. *BMC Vet. Res.* **2022**, *18*, 410. [\[CrossRef\]](https://doi.org/10.1186/s12917-022-03514-y)
- 17. Wang, J.; Liang, S.; Lu, X. Bacteriophage endolysin Ply113 as a potent antibacterial agent against polymicrobial biofilms formed by *enterococci* and *Staphylococcus aureus*. *Front. Microbiol.* **2023**, *14*, 1304932. [\[CrossRef\]](https://doi.org/10.3389/fmicb.2023.1304932)
- 18. Abdurahman, M.A.; Durukan, ˙I.; Dinçer, T. *Staphylococcus aureus* Bacteriophage 52 endolysin exhibits anti-biofilm and broad antibacterial activity against gram-positive bacteria. *Protein J.* **2023**, *42*, 596–606. [\[CrossRef\]](https://doi.org/10.1007/s10930-023-10145-1)
- 19. Soontarach, R.; Srimanote, P.; Arechanajan, B. Characterization of a novel bacteriophage endolysin (LysAB1245) with extended lytic activity against distinct capsular types associated with *Acinetobacter baumannii* resistance. *PLoS ONE* **2024**, *19*, e0296453. [\[CrossRef\]](https://doi.org/10.1371/journal.pone.0296453)
- 20. Mohammadi, T.N.; Lin, Y.; Maung, A.T. Characterization and antibacterial activity of highly thermo-and pH-stable endolysin LysCPQ7 and its application as a biocontrol agent against *Clostridium perfringens* in milk and cheese. *Food Control.* **2024**, *156*, 110157. [\[CrossRef\]](https://doi.org/10.1016/j.foodcont.2023.110157)
- 21. Pennone, V.; Sanz-Gaitero, M.; O'Connor, P. Inhibition of *L. monocytogenes* biofilm formation by the amidase domain of the phage vB_LmoS_293 endolysin. *Viruses.* **2019**, *11*, 722. [\[CrossRef\]](https://doi.org/10.3390/v11080722) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/31390848)
- 22. Cisek, A.A.; Dąbrowska, I.; Gregorczyk, K.P. Phage therapy in bacterial infections treatment: One hundred years after the discovery of bacteriophages. *Curr. Microbiol.* **2017**, *74*, 277–283. [\[CrossRef\]](https://doi.org/10.1007/s00284-016-1166-x) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/27896482)
- 23. Drulis-Kawa, Z.; Majkowska-Skrobek, G.; Maciejewska, B. Bacteriophages and phage-derived proteins–application approaches. *Curr. Med. Chem.* **2015**, *22*, 1757–1773. [\[CrossRef\]](https://doi.org/10.2174/0929867322666150209152851) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/25666799)
- 24. Loessner, M.J. Bacteriophage endolysins-current state of research and applications. *Curr. Opin. Microbiol.* **2005**, *8*, 480–487. [\[CrossRef\]](https://doi.org/10.1016/j.mib.2005.06.002) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/15979390)
- 25. Xu, Y.; Liang, X.; Hyun, C.G. Isolation, Characterization, Genome Annotation, and Evaluation of Tyrosinase Inhibitory Activity in Secondary Metabolites of *Paenibacillus* sp. JNUCC32: A Comprehensive Analysis through Molecular Docking and Molecular Dynamics Simulation. *Int. J. Mol. Sci.* **2024**, *25*, 2213. [\[CrossRef\]](https://doi.org/10.3390/ijms25042213) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/38396889)
- 26. Nguyen, L.T.; Schmidt, H.A.; Von, H.A. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenie. *Mol. Biol. Evol.* **2015**, *32*, 268–274. [\[CrossRef\]](https://doi.org/10.1093/molbev/msu300)
- 27. Maluf, N.K.; Gaussier, H.; Bogner, E. Assembly of bacteriophage lambda terminase into a viral DNA maturation and packaging machine. *Biochemistry* **2006**, *45*, 15259–15268. [\[CrossRef\]](https://doi.org/10.1021/bi0615036)
- 28. Prevelige, J.P.E.; Cortines, J.R. Phage assembly and the special role of the portal protein. *Curr. Opin. Virol.* **2018**, *31*, 66–73. [\[CrossRef\]](https://doi.org/10.1016/j.coviro.2018.09.004)
- 29. Taslem, M.J.; Awe, A.; Guo, W. Understanding bacteriophage tail fiber interaction with host surface receptor: The key "blueprint" for reprogramming phage host range. *Int. J. Mol. Sci.* **2022**, *23*, 12146. [\[CrossRef\]](https://doi.org/10.3390/ijms232012146)
- 30. Kruithof, P.D.; Lunev, S.; Lozano, S.P.A. Unraveling the role of thiosulfate sulfurtransferase in metabolic diseases. *BBA-Mol. Basis Dis.* **2020**, *1866*, 165716. [\[CrossRef\]](https://doi.org/10.1016/j.bbadis.2020.165716)
- 31. Nakajima, T. Roles of sulfur metabolism and rhodanese in detoxification and anti-oxidative stress functions in the liver: Responses to radiation exposure. *Med. Sci. Monit.* **2015**, *21*, 1721. [\[CrossRef\]](https://doi.org/10.12659/MSM.893234) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/26071878)
- 32. Rodríguez-Rubio, L.; Martínez, B.; Donovan, D.M. Bacteriophage virion-associated peptidoglycan hydrolases: Potential new enzybiotics. *Crit. Rev. Microbiol.* **2013**, *39*, 427–434. [\[CrossRef\]](https://doi.org/10.3109/1040841X.2012.723675) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/22991936)
- 33. Wang, I.N.; Smith, D.L.; Young, R. Holins: The protein clocks of bacteriophage infections. *Annu. Rev. Microbiol.* **2000**, *54*, 799–825. [\[CrossRef\]](https://doi.org/10.1146/annurev.micro.54.1.799) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/11018145)
- 34. Kim, Y.G.; Cha, J.; Chandrasegaran, S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. *Proc. Nat. Acad. Sci. USA* **1996**, *93*, 1156–1160. [\[CrossRef\]](https://doi.org/10.1073/pnas.93.3.1156)
- 35. Williams, R.J. Restriction endonuclease: Classification, properties, and applications. *Mol. Biotechnol.* **2003**, *23*, 225–243. [\[CrossRef\]](https://doi.org/10.1385/MB:23:3:225)

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.