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Abstract: Exploratory factor analysis (EFA) is a widely used tool in the social sciences.
Researchers employ it to identify the latent structure underlying observed indicator vari-
ables during the process of scale development, theory construction, and comparison of
various constructs. One of the most important aspects of conducting EFA is determining
the number of factors to retain. There exist a number of techniques for this purpose, but
none have been identified as uniformly optimal in all situations. The purpose of this
simulation study is to compare several such techniques in the context of dichotomous and
ordinal indicator variables (corresponding to items on an instrument). Some of the methods
investigated in this study include well-established techniques, such as parallel analysis
and the minimum average partial correlation, as well as newly developed ones, such as
out-of-sample prediction error and the next eigenvalue sufficiency test. The results of the
study demonstrate that a Bayesian estimation approach and the out-of-sample prediction
error method are particularly effective for identifying the number of factors to retain. The
implications for practice are discussed.
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1. Introduction
Exploratory factor analysis (EFA) is perhaps one of the most widely used statistical

methods in psychology and other social sciences. For example, EFA plays a role in scale
development, helping researchers to identify the latent structure underlying measurement
instruments (Ratti et al., 2017). In other contexts, psychologists and educational researchers
use EFA to investigate theories about constructs of interest, such as motivation or executive
functioning (Coker et al., 2018). Finally, it can be used as a precursor to confirmatory
factor analysis (CFA; Canivez et al., 2019). One of the major challenges in using EFA is
determining how many factors to retain. This issue arises as a result of the inherently
exploratory nature of EFA. In contrast to CFA, in which the hypothesized factor structure is
explicitly modeled by the researcher, for EFA, the number and nature of the underlying
factors is not specified a priori. Therefore, the researcher must use the results from the EFA
to ascertain how many latent variables are likely to underlay the observed indicators.

There are a number of techniques available to researchers for determining the number
of factors to retain from an EFA, none of which has been found to be the best in all conditions.
Prior work with EFA has found that methods that are effective with normally distributed
indicator variables may not perform as well for non-normal or categorical indicators (e.g.,
Yang & Xia, 2015; Wirth & Edwards, 2007). The goal of the current study is to compare
two relatively new techniques for determining the number of factors to retain (the next
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eigenvalue sufficiency test and out-of-sample prediction) with other approaches that have
been shown to be effective in prior work. Prior work in this area, particularly with the
newer methods, has largely focused on continuous observed indicator variables. This
study extends upon this earlier work by using categorical indicators. The methods selected
for inclusion in this study were selected based upon their proven performance in prior
research (e.g., parallel analysis, minimum average partial, and exploratory graph analysis),
or because they are new, and have shown promise in prior work, but have not been studied
in the context of categorical indicator variables (e.g., next eigenvalue sufficiency test, out-
of-sample prediction error, Bayesian EFA). Prior research and the relative merits of these
methods are described in more detail below. In the following pages there is a brief review of
EFA, followed by a description of the various methods used in this study. The study goals
are then outlined, the simulation methodology used to address these goals is described,
and the results of the simulation are presented. Finally, the manuscript concludes with a
discussion of the results and implications for practice.

1.1. Exploratory Factor Analysis

The standard EFA model can be expressed as follows:

Y = υ + Λξ + Ψ (1)

where

Y = matrix of observed indicator variables
ξ = matrix of factor(s)
υ = vector of intercepts
Λ = matrix of factor loadings relating indicators to factor(s)
Ψ = matrix of unique random errors associated with the observed indicators

Of particular interest in the context of EFA is Λ, which links the observed indicator
variables to the factors. Two of the most popular approaches for estimating the parameters
in Equation (1) are maximum likelihood (ML) and principal axis factoring (PAF). Once the
factor loadings have been estimated, they are rotated, with the goal of achieving a simple
structure such that each variable has only a single large loading.

Perhaps the most important step in conducting EFA is determining the number of
factors to retain. EFA is inherently exploratory in nature, and the parameters in Equation
(1) are freely estimated such that the indicators are allowed to have non-zero loadings
for any (or all) of the latent variables. Furthermore, the number of factors in EFA is not
defined ahead of time. Researchers typically try several EFA solutions, each differing
by the number of factors to be retained. Including additional factors will always yield
a better statistical fit to the data, in much the same way that more complex regression
models generally account for more variance in the dependent variable (Gorsuch, 1983).
Therefore, if the researcher’s only goal is to more fully explain the covariance matrix for
the observed variables, then including more factors will always be the preferred strategy.
However, in most research scenarios, we want to explain the observed data with the most
parsimonious model possible. In the EFA context, this means retaining the fewest number
of factors possible, while still providing satisfactory statistical fit to the observed variance–
covariance matrix. In addition, the EFA solution should yield a conceptual meaningful
solution. Balancing statistical fit with conceptual coherence can be a difficult task. Thus,
quantitative researchers have devoted much attention to the development of statistical
tools to help researchers to identify the number of factors to retain in an EFA. Below is a
description of several of these that have proven to be effective in a number of situations,
and which will be examined in the current study.
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1.2. Parallel Analysis

One of the most consistently accurate methods that has been developed for determin-
ing the number of factors to retain is parallel analysis (PA), which was first described by
Horn (1965). PA is based upon the use of bootstrap sampling to create a large number of
datasets that conform to the null hypothesis of 0 factors. For each of these datasets, EFA is
conducted, and the eigenvalues associated with each factor are retained. The eigenvalues
from the observed data are compared to those from the bootstrap sample data in order
to determine the number of factors to retain. If the observed eigenvalue for a factor is
greater than the 95th percentile for that factor in the bootstrap sample, the null hypothesis
is rejected and the factor is retained. As an example, if the observed eigenvalue associated
with the first factor is greater than the 95th percentile for the first factor in the bootstrap
sample, then the researcher would determine that at least one factor should be retained. The
observed eigenvalue for the second factor would then be compared to the 95th percentile
of the second factor for the bootstrap sample, and again, the factor would be retained if the
observed eigenvalue is greater than the bootstrap 95th percentile. This process is repeated
until the null hypothesis is not rejected. Previous research has demonstrated that PA is a
very effective tool for determining the number of factors to retain (Auerswald & Moshagen,
2019; Fabrigar & Wegener, 2011; Preacher & MacCallum, 2003; Xia, 2021).

1.3. Minimum Average Partial

The minimum average partial (MAP) approach to determining the number of factors
to retain was developed by Velicer (1976). It uses the correlations among the observed
indicators, after the effects of the factors are partialed out, to determine the number of
factors to retain. The correlation matrix for the observed indicators is first calculated, and
the correlations are squared and averaged. Next, a principal components analysis (PCA)
is fit to the data. The correlation matrix among the observed variables is again calculated,
this time after the influence of the first factors is partialed out. Again, the correlations are
squared and averaged. This step is repeated for each factor solution of interest (e.g., 2, 3, 4).
The researcher would then retain the number of factors that corresponds to the minimum of
the average partial correlations obtained using the steps described above. Researchers have
found MAP to be an accurate approach for determining the number of factors that should
be retained in an EFA (Caron, 2018; Garrido et al., 2011; Ruscio & Roche, 2012; Zwick &
Velicer, 1986).

1.4. Comparison of Model Fit Statistics

Some researchers have treated the determination of the number of factors to retain
as a model fit problem, such that the factor model that yields the best fit to the data is
deemed to be optimal (Clark & Bowles, 2018; Garrido et al., 2011; Preacher et al., 2013).
One commonly used set of fit indices for model selection in statistics is information indices
such as the Bayesian Information Criterion (BIC). The BIC takes the following form:

BIC = χ2
M + qln(n)v (2)

where

χ2
M = model Chi-square value

q = number of parameters estimated in the model
v = number of observed variables
n = sample size

Statistics such as the BIC reflect the overall fit of a model to the data, with a penalty
for model complexity. Models with more factors will always yield a better fit to the data,
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and thus will need to be penalized for their relatively great complexity when compared
to simpler models. In other words, models with more factors need to be penalized for
their relatively great complexity so that they are not selected simply because they are more
complex. This is the logic behind information indices such as the BIC. Models with lower
BIC values are taken to provide a better fit to the data. Thus, in the context of EFA, the
factor model with the fewest factors is the one to be retained.

In addition to using information indices as a way to determine the number of factors
to retain, other scholars have suggested the use of fit indices such as the root mean squared
error of approximation (RMSEA). This statistic is used to assess the fit of a factor analysis
model, measuring the degree to which the model Chi-square differs from the model degrees
of freedom. When the model provides a perfect fit to the data, the Chi-square and degrees
of freedom will be equal to one another. Larger values of the RMSEA indicate a greater
difference between the Chi-square and degrees of freedom, and thus a worse model fit. The
RMSEA takes the following form:

RMSEA =

√
χ2

T − d fT

d fT(n − 1)
(3)

where

χ2
T = ML-based Chi-square test for the target model, i.e., the model of interest

d fT = degrees of freedom for the target model (number of observed covariances and
variances minus number of parameters to be estimated)
n = sample size

In order to compare model fit and determine the number of factors to retain from an
EFA, the difference between the RMSEA values for solutions with an adjacent number of
factors (i.e., one vs. two, two vs. three, etc.) was used. Prior research (e.g., Finch, 2020;
Barendse et al., 2015; Yang & Xia, 2015; Preacher et al., 2013) has found that this RMSEA
difference approach can yield accurate results for both continuous and categorical indicator
variables. Based on this earlier work, an RMSEA difference of 0.015 or greater suggests
a meaningful difference in model fit. In other words, when the difference in the RMSEA
values for two factor models (e.g., three and four factors) exceeds 0.015, the model with the
smaller RMSEA is taken to provide a better fit. If the difference does not exceed 0.015, then
the simpler model (i.e., the one with fewer factors) is retained.

1.5. Exploratory Graph Analysis

Recently, authors have proposed the use of an alternative network-based approach to
modeling data that have traditionally been addressed using latent variable models, such as
factor analysis (Epskamp et al., 2017; H. F. Golino & Epskamp, 2017; H. Golino et al., 2020).
Exploratory graph analysis (EGA) uses a Gaussian graphical model (GGM; H. F. Golino &
Epskamp, 2017). The GGM corresponds directly to the factor model (H. Golino et al., 2020).
The inverse of the covariance matrix for the indicator variables used in factor analysis is at
the heart of GGM estimation. In this context, this inverse is called the precision matrix and
is denoted as K, with diagonal elements (kjj, kii). The standardized negative elements of
K can be used to obtain the partial correlation between the pairs of indicators i and j, as
shown in Equation (4).

ρij = −
kij√

kjj
√

kii

(4)

These partial correlations serve as the degree of relationship between pairs of variables,
and are used to identify variable clusters in EGA. Variable clusters correspond to factors in
an EFA.
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A network reflecting the system of relationships among the variables is then estimated
using the graphical least absolute shrinkage and selection operator (GLASSO) technique
(Friedman et al., 2008), which is a regularization method based on the lasso estimator
(Tibshirani, 1996). This approach applies penalties to the relationships among the variables,
so that small values are driven to 0 and only large estimates remain. When estimating
relationships among observed indicators using GLASSO, this penalized approach results
in a sparse network, with only the most salient connections being estimated and all others
being set to 0. The amount of regularization is determined by a tuning parameter known
as g. H. Golino et al. (2020) showed that the optimal value of g can be determined using
the extended Bayesian Information Criterion (eBIC). The interested reader is referred to
Golino et al. for more details.

An alternative approach to fitting graphs for the purpose of modeling connections
among observed indicators is the Triangulated Maximally Filtered Graph (TMFG) approach
(Massara et al., 2016). This technique limits the number of zero-order correlations that can
be included in a network, thereby constructing a relatively sparse network, where only
nontrivial connections among the indicators are included. The number of variable clusters
(corresponding to latent variables) to retain in the context of EGA is determined using the
Walktrap algorithm (Pons & Latapy, 2005), details of which can be found in H. F. Golino
and Epskamp (2017).

H. F. Golino and Epskamp (2017) reported that EGA yielded comparable results to
PA in terms of correctly identifying the number of factors to retain. In addition, EGA
outperformed MAP in this regard across a range of study conditions. EGA was also
found to perform similarly to PA in the presence of outliers among the observed indicator
variables (Finch, 2019). In short, EGA appears to be a viable alternative for researchers to
use in determining the number of latent traits to retain when the indicators are continuous
variables. However, less work has been carried out examining its performance in the
context of categorical indicators. For these reasons, it is included in the current study.

1.6. Next Eigenvalue Sufficiency Test (NEST)

One of the earliest approaches for determining the number of factors to retain was
described by Kaiser (1970). This technique involved retaining factors associated with
eigenvalues greater than 1, based on the logic that when standardized, each observed
indicator variable will have a variance of 1. Thus, if a factor accounts for more than one unit
of variance (as represented by an eigenvalue greater than 1), then it is worthy of retention.
A major problem with using eigenvalues as outlined above is that the cut-off of 1 has
been shown not to be very accurate in many situations, in large part due to the fact that
it does not account for the presence of sampling variability in the eigenvalues (Preacher
et al., 2013). In order to address this problem, Achim (2017) introduced the next eigenvalue
sufficiency test (NEST) as a way to more accurately assess the number of factors to retain
in EFA.

The NEST involves a series of hypothesis tests, where the null is that k factors should
be retained. The NEST sequence uses the following steps:

1. Conduct a principal components analysis (PCA) for the observed data and retain the
eigenvalues.

2. Start with H0 : retain zero factors.
3. Generate data with zero underlying factors.
4. Conduct a PCA on the generated data from step 3.
5. Compare the first observed eigenvalue from step 1 with the first eigenvalues from

step 4.
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6. If the observed first eigenvalue is ≥95th percentile of the generated first eigenvalues,
reject H0. Otherwise, retain H0 and stop.

7. Generate data with one underlying factor.
8. Conduct a PCA on the generated data from step 7.
9. Compare a first observed eigenvalue from step 1 with the first eigenvalues from step 8.
10. If the observed second eigenvalue is ≥95th percentile of the generated second eigen-

values, reject H0. Otherwise, retain H0 and stop.
11. Continue incrementing the eigenvalues until H0 is not rejected.

Research has demonstrated that the NEST is a promising technique for determining
the number of factors to retain when the indicators are continuous variables (Brandenburg
& Papenberg, 2024). It has not been thoroughly explored for use with categorical indicators,
which is one of the goals of this study.

1.7. Out-of-Sample Prediction Error

Haslbeck and van Bork (2024) recommended an approach to determining the number
of factors based on the ability of a given factor model to accurately predict values for the
indicator variables. This approach uses the predicted covariance matrix (Σ) among the
observed indicator variables for a factor model with k latent variables to make predictions
of individual values for the indicators. The factor model with the most accurate predictions
of the observed variables is selected as optimal. Haslbeck and van Bork took advantage
of the correspondence between standardized regression coefficients, relating the observed
indicators with one another and the inverse of Σ(K).

βi,j + β j,i

2
= −

Kij√
Kii

√
Kjj

(5)

where

βi,j = standardized coefficient relating indicator j to indicator i
Kij = element i,j in the inverse of Σ

For each indicator variable xi a regression model using all other indicators as predictors
is fit to the data, where the regression coefficients come from the factor model using
Equation (5). The resulting equation is used to predict values of xi for each member of
the sample.

In order to avoid the problem of overfitting that is inherent when we use the same
sample to estimate the model and assess its accuracy, Haslbeck and van Bork used k-
fold cross-validation. This approach involves creating k (e.g., 10) subsamples of the data,
estimating the factor model with the individuals not in subsample k, and then obtaining
predicted indicator variable values for those in subsample k. The prediction accuracy is
then estimated for subsample k. These steps are repeated for each of the k subsamples, and
the prediction errors are then averaged. The factor model that yields the lowest average
prediction is error is selected.

The work of Haslbeck and van Bork (2024) is based on an approach developed by
Browne and Cudeck (1989). In this earlier iteration of the method, the sample is divided
in half, and a set of factor models is fit to the first half of the dataset. The resulting factor
model is then used to obtain estimated indicator covariance matrices for the data in the
second half of the sample. For each factor model, the resulting predicted covariance matrix
for the second half of the sample is compared with the observed covariance matrix, and the
optimal factor model is determined to be the one that minimizes the difference between the
model predicted and observed covariance matrices. As with the Haslbeck and van Bork
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approach, the retained number of factors corresponds to the solution with the smallest
average prediction error for the covariance matrix.

1.8. Bayesian EFA

The final approach to be considered in this study involves Bayesian estimation of the
EFA model (BEFA). The methodology underlying this approach was outlined by Conti
et al. (2014), and involves the familiar Markov Chain Monte Carlo (MCMC) approach
to Bayesian estimation. We will not describe Bayesian estimation in detail here. The
interested reader is referred to available descriptions of Bayesian estimation, such as Kaplan
(2014). In the context of EFA, MCMC is used to estimate each parameter in Equation (1),
as well as the optimal number of factors to retain, K. Unlike with most standard EFA
estimation procedures (e.g., ML, PAF), with BEFA, each indicator is constrained to load
on only one latent trait. In other words, BEFA does not allow indicators to have cross-
loadings. Essentially, as described by Conti et al., the BEFA algorithm identifies the
statistically optimal arrangement of loadings relating the indicators to the factors, under
the constraint that for each indicator, there can be only one non-zero loading. All the
possible arrangements of the loading space are explored, and the set that best replicates
the observed covariance matrix is selected as optimal. The default noninformative prior
distributions for the model parameters as described by Conti et al. are as follows:

Λ : N
(
0, σ2

m
)

ξ : N(0, Ω)

σ2
ε : IG(c, C)

K : Dirichlet(k)

A summary of the approach for determining the number of factors to retain for each
method appears in Table 1.

Table 1. Determination of number of factors to retain by method.

Method Determination of Number of Factors

Parallel analysis
Comparison of the observed eigenvalues with the bootstrap distribution of eigenvalues
under the null of no factor structure. Retain a factor if its observed eigenvalue is greater

than the 95th percentile of the null distribution.

Minimum average partial Retain the number of factors corresponding to the minimum average correlation among
indicators after partialing out the variance due to the factors.

Comparison of model fit statistics
Use the difference in the RMSEA values to determine the number of factors to retain. When
the difference in the RMSEA between factor solutions exceeds 0.015, retain the model with

the smaller RMSEA.

GLASSO
The number of factors to retain is a penalized parameter that is estimated by the model

using the Walktrap algorithm. More specifically, it is the value that minimizes the penalized
least squares criterion.

Next eigenvalue sufficiency test

A comparison of the observed eigenvalues from the principal components of the observed
data with the eigenvalues for the data generated under the null hypothesis of m (e.g., 0, 1,
2. . .) factors. If the observed eigenvalue for m + 1 factors is greater than the 95th percentile
of the eigenvalues for the m + 1 factor, given the data generated assuming a latent structure

of m factors, then reject the null of m factors, and generate data assuming m + 1 factors.
Continue until the null hypothesis is no longer rejected.

Out-of-sample prediction error

Split the sample into a training and test set. Fit an EFA model for m factors using the
training set. Use the factor model obtained from the training set to predict the values of the

indicators for the test set. Repeat for all the desired values of m factors and retain the
number of factors that minimizes the average prediction error for the indicator variables.

Bayesian EFA
Fit the EFA model and estimate the number of factors to retain as a model parameter. The
number of factors to retain is the median of the posterior distribution for the number of

factors parameter.
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1.9. Study Goals

The goal of this simulation study is to extend upon earlier work by comparing the
performance of several methods for determining the number of factors to retain when the
observed indicator variables are categorical. Prior research has found that PA and EGA, in
particular, perform well under a number of conditions. However, there are new methods
for determining the number of factors to retain, out-of-sample and NEST, that have not
been extensively studied for models involving categorical indicators. In addition, relatively
little work has been carried out examining the performance of Bayesian EFA in the context
of categorical factor indicators. Thus, the current study seeks to extend the literature by
ascertaining how EFA based on this estimation method compares to the more traditional
methods for determining the number of factors to retain. Given that in many cases, EFA is
applied to tests and assessments involving categorical item responses, it is important to
know how accurate these various approaches are for such indicators.

Based upon the prior research discussed above, it is hypothesized that PA and GLASSO
will yield more accurate results regarding the number of factors to retain than the other
techniques, including model fit statistics and MAP. Given the lack of research involving
categorical data with the out-of-sample and NEST methods, it is not clear how they are
likely to perform compared to the other methods studied here. However, it has been shown
that both methods are effective in the context of normally distributed indicators (Haslbeck
& van Bork, 2024; Achim, 2017), so if these trends hold for categorical data, these methods
should yield accuracy rates comparable to those of PA and GLASSO. In addition, it is
hypothesized that in conjunction with the robust correlation matrix estimation approach,
PA will be the most accurate technique for identifying the number of factors to retain.

2. Materials and Methods
The study goals described above were addressed using a Monte Carlo simulation

design. For each combination of conditions, which are described below, 1000 replications
were generated. The data generation and analyses were all conducted using R version
4.3 (R Development Team, 2024). A variety of factors were manipulated, each of which is
described below. Data were generated using the MonteCarloSEM package (version 0.0.8)
in R (Orcan & Imam, 2024). The manipulated study conditions are described below.

2.1. Number of Factors

Simulations were conducted in which the number of factors in the data-generating
model were either 1, 3, or 5. These conditions were included in order to represent a range
of possibilities, from a simple unidimensional model to a complex model with 5 factors.

2.2. Factor Loading Values

Three factor loading conditions were included in this study: 0.5, 0.65, and 0.8. These
values were drawn from prior research (Liu & Zumbo, 2012; Shi et al., 2020; Finch, 2020;
Xia, 2021), and represent relatively small, medium, and large relationships between the
observed indicators and latent variables.

2.3. Number of Indicators per Factor

For each of the factors in the 3 and 5 factors cases, either 3, 6, or 12 indicators were
simulated, yielding a total number of 9, 18, or 36 indicators in the 3 factors condition, and
15, 30, or 60 indicators in the 5 factors condition. For the 1 factor case, 6 or 12 indicators
were used.
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2.4. Indicator Categories

Indicators were simulated to be either ordinal with 4 categories, or dichotomous.
When the indicators had 4 categories, the indicator threshold parameters were −0.5, 0, and
0.5, whereas for the dichotomous variables, the thresholds were 0 for all indicators. The
numbers of 2 and 4 categories per indicator were selected for this study for two reasons.
First, these are relatively commonly seen numbers in practice, and thus the results of the
study should be useful to researchers and practitioners. Second, we can directly compare
the impact of doubling the number of response categories (from 2 to 4), which may help
to give instrument developers insights regarding the impact of having more versus fewer
categories for their items. We recognize that other numbers of item response categories
are quite common in the literature, particularly 5. We elected to include two number of
category conditions in the current study in order to keep the presentation of the results at a
manageable level. However, we acknowledge that other viable options exist for the number
of indicator categories, and therefore we encourage future research examining these.

2.5. Interfactor Correlation

The interfactor correlations were simulated to be either 0, 0.4, or 0.8, reflecting
small/no, medium, and large relationships among the latent variables (Cohen, 1988).
A similar range of values has been used in previous research investigating the performance
of exploratory factor analysis (Liu & Zumbo, 2012; Shi et al., 2020; Xia, 2021; Haslbeck &
van Bork, 2024).

2.6. Sample Size

The sample sizes used in the study were 250, 500, and 1000. These values correspond
to those used in Liu and Zumbo (2012), and represent samples ranging from relatively
small (250) to relatively large (1000) in the context of EFA practice.

2.7. Methods for Determining the Number of Factors

In order to determine the number of factors to be retained, multiple methods were
used for each simulation replication, including PA, MAP, EGA using GLASSO, EGA using
TMFG, RMSEA, BIC, out-of-sample prediction of the covariance matrix (COV), out-of-
sample prediction of the observed variable values (VAR), Bayesian EFA with informative
priors (Bayes-I), Bayesian EFA with noninformative priors (Bayes-N), and NEST. PA and
MAP were conducted using the R psych package, version 2.4.3 (Revelle, 2022), and EGA
was conducted using the EGAnet R package, version 1.2.3 (Hudson, 2024). BEFA was
employed using the befa function from the BayesFM R package, version 0.1.5 (Patek, 2024).
For BEFA-N, the noninformative priors outlined above were used, whereas for BEFA-I, an
informative Dirichlet prior was used, such that a probability of 0.75 was associated with
the correct number of factors to retain. A maximum of 6 factors were considered by both
BEFA-I and BEFA-N. For both BEFA approaches, a total of 11,000 links were used in the
MCMC chain, with the first 1000 serving as the burn-in period. To address the potential
of autocorrelation in the MCMC estimates, every 10th element in the chain was sampled,
yielding a posterior distribution of 1000 values for each model parameter. The MAP, BIC,
and RMSEA values were obtained using the vss function from the psych package.

With respect to PA, principal axis factoring was used to extract the factors, and the 95th
percentile of the simulated eigenvalues was used as the cut-off against which the observed
eigenvalues were compared. The PA comparison data were generated using resampling
of the sampled observations, and 1000 datasets were used. Principal axis factoring was
applied to each of these randomly sorted datasets, and the resulting eigenvalues were
retained to create the comparison distribution. For each simulated dataset, each method
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was applied and the resulting number of factors to retain was recorded. These were then
used to calculate the study outcomes, which are described below. The simulation codes
are available at the Open Science Foundation (https://osf.io/w6ra3/, accessed on 25
November 2024).

2.8. Study Outcomes

Two study outcomes were used in the study. The primary outcome was the proportion
of replications for each combination of conditions that correctly identified the number
of factors to retain. The second outcome was the mean number of factors that were
recommended for retention across replications. In order to identify the manipulated results
and their interactions that impacted the primary study outcome, a mixed effects analysis
of variance (ANOVA) was used, in conjunction with the partial η2 effect size. The within-
subjects effect was the method used to determine the number of factors to retain, and the
between-subjects effects included the other manipulated factors. For each combination of
conditions, the proportion of correct outcomes across the 1000 replications was calculated,
and then served as the dependent variable for the ANOVA. The assumptions of normality
and heteroscedasticity were assessed and found to be met. The ANOVA was conducted
using SPSS version 29.

3. Results
3.1. Three and Five Factors

The results of the ANOVA for the three/five factor simulation results identified the
interactions of method by number of loadings by interfactor correlation (F40,488 = 4.11,
p < 0.001, η2 = 0.25), method by number of indicators by number of factors (F10,119 = 16.91,
p < 0.001, η2 = 0.59), and method by sample size (F20,240 = 3.70, p < 0.001, η2 = 0.24) as
statistically significantly associated with the proportion correct. There were no statistically
significant results for the number of indicator categories, nor any interactions involving
this variable. Therefore, it will not be discussed further in this manuscript.

Figure 1 displays the proportion of replications for which the correct number of factors
was identified by factor loading value, interfactor correlation, and method. Regardless
of the interfactor correlation, the correct identification rates were higher for models with
higher factor loading values. The correct identification rates were also higher for lower
interclass correlation values. In other words, the more differentiated the factors were in
the population (corresponding to lower correlations), the more accurate all of the methods
were in identifying the number of factors to retain. With regard to comparisons across
the methods, COV, VAR, PA, and Bayes (both informative and noninformative) yielded
the highest accuracy rates when the interfactor correlation was 0.8. It should be noted
that except for factor loading values of 0.8, these accuracy rates were approximately 0.4
or lower. When the interactor correlation was 0.4, GLASSO consistently yielded the most
accurate results for loadings of 0.65 or lower, followed by COV, VAR, and the Bayesian
methods. When the loadings were 0.8, several methods had accuracy rates above 0.9,
including COV, VAR, BIC, RMSEA, GLASSO, and TMFG. Finally, when the factors were
completely uncorrelated, COV, VAR, GLASSO, TMFG, and the Bayes methods yielded the
most accurate results for factor loadings of 0.5 and 0.65. When the loadings were 0.8, these
methods, along with BIC, RMSEA, and PA, had accuracy rates between 0.95 and 1.0.

https://osf.io/w6ra3/
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Figure 1. The proportion of replications for which the correct number of factors was identified by
method, factor loading value, and interfactor correlation: three and five factors.

Figure 2 shows the proportion of replications for which the correct number of factors
was selected by method, number of indicators, and number of factors. As is evident
in Figure 1, COV and VAR consistently had relatively high accuracy rates. In addition,
GLASSO and TMFG displayed among the highest accuracy rates when six indicators per
factor were present. On the other hand, in the three indicators and three factors condition,
the highest accuracy rates were associated with PA and the Bayes approaches. For three
indicators and five factors, in addition to COV and VAR, PA and NEST had the highest
accuracy rates among the methods examined here. The accuracy rates by method and
sample size appear in Figure 3. For most of the methods, accuracy improved concomitantly
with increased sample sizes. This improvement was more marked for some methods,
including COV, VAR, BIC, and PA. For the other techniques, improved accuracy with
increasing sample sizes was much less notable.

The results of the ANOVA for the three/five factor simulation results identified
the interaction of method by number of factors by interfactor correlation (F40,488 = 5.34,
p < 0.001, η2 = 0.29), method by factor loadings by number of factors (F10,119 = 7.11,
p < 0.001, η2 = 0.35), number of indicators by number of factors (F15,119 = 4.88, p < 0.001,
η2 = 0.22), and method by sample size by number of factors (F20,240 = 6.56, p < 0.001,
η2 = 0.27) as statistically significantly associated with the proportion correct. Figure 4
includes the mean number of factors retained by method, number of factors, and interfactor
correlation. Most of the techniques included in this study had means quite close to the actual
number of factors used to generate the data. Generally speaking, the Bayes approaches
retained too many factors when they were incorrect, whereas MAP, BIC, and RMSEA
tended to underfactor when they were incorrect. Similar patterns for the mean number
of factors retained are apparent in Figures 5–7, which display this metric by method and
factor loading values, number of indicators, and sample size, respectively.
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3.2. One Factor

For the one factor case, the results of the ANOVA identified the interaction of method
by sample size (F20,40 = 1.93, p = 0.038, η2 = 0.49) and method by number of indicators
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(F10,40 = 13.10, p < 0.001, η2 = 0.77) as statistically significantly associated with the
proportion correct for factor retention. Figure 8 includes the proportion correct for the
one factor case by sample size and method. Several methods were accurate in virtually all
instances, including MAP, BIC, and the Bayesian estimators. In addition, for sample sizes
of 500 or 1000, RMSEA, GLASSO, TMFG, and PA also had accuracy rates at or near 1.00.
On the other hand, unlike RMSEA, GLASSO, TMFG, and PA, COV, VAR, and NEST each
had lower accuracy rates than the other methods across sample sizes. In addition, these
techniques did not see improved accuracy concomitantly with increased sample size in the
one factor case.
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The proportion correct in the one factor case by method and number of indicators
also appears in Figure 8. Consistently with the results by sample size, MAP, BIC, and the
Bayesian methods all yielded accuracy rates at or near 1.0, regardless of the number of
indicators. COV and VAR saw improved accuracy when more indicators were present,
whereas GLASSO, TMFG, and particularly NEST all displayed somewhat lower accuracy
for more indicators.

The mean number of factors retained by method, number of indicators, and sample
size appear in Table 2. These results reinforce the findings from Figure 8 that MAP and BIC
were extremely accurate in terms of correctly identifying the one factor solution. When
COV, VAR, PA, and Bayes erred, they retained too many factors. Indeed, this overfactoring
was consistent across the number of indicators and sample size conditions. In contrast,
the RMSEA slightly underfactored the solutions, given that the mean number retained fell
between 0.90 and 0.98. GLASSO, TMFG, and NEST appear to have been most strongly
impacted by the number of indicators and sample size. In the presence of 12 indicators,
these techniques retained a higher mean number of factors than was the case for 6 indicators.
With respect to sample size, the means for GLASSO and TMFG were close to or at the
nominal number of factors (one) for sample sizes of 500 or 1000. The mean number retained
was also lower for NEST, though it was still higher than for the other methods studied here.

Table 2. Mean number of factors retained by method, sample size, and number of indicators:
one factor.

Number of Indicators Sample Size

Method 6 12 250 500 1000

COV 1.06 1.09 1.08 1.07 1.07
VAR 1.04 1.09 1.07 1.06 1.06
MAP 1 1 1 1 1
BIC 1 1 1 1 1

RMSEA 0.98 0.90 0.93 0.95 0.96
GLASSO 1.03 1.10 1.13 1.02 1

TMFG 1.04 1.12 1.15 1.03 1
PA 1.02 1.14 1.10 1.07 1.07

Bayes-I 1.03 1.07 1.04 1.05 1.06
Bayes-N 1.04 1.07 1.05 1.06 1.07

NEST 1.06 1.87 1.55 1.46 1.44

4. Discussion
The primary goal of this study was to compare the performance of several methods

with respect to determining the number of factors to retain in the context of EFA. Prior
research in this area has found that EGA and PA are consistently effective in this regard,
particularly for normally distributed indicator variables (H. F. Golino & Epskamp, 2017).
Recently, new approaches for determining the number of factors to retain have been
suggested as viable alternatives to these other approaches, specifically the out-of-sample
(Haslbeck & van Bork, 2024) and NEST (Achim, 2017) methods. Furthermore, BEFA (Conti
et al., 2014) has also emerged as a potentially useful tool for researchers to use in fitting
EFA models. Although these latter three approaches have been studied in the context of
continuous indicators, they have not been as thoroughly examined for cases where the
indicators are categorical in nature. Thus, it was hoped that the current study would extend
the literature in determining the number of factors to retain by focusing on EFA models
with categorical indicators, which correspond to situations where the variables of interest
are items on a psychological or educational instrument.

The results of this study revealed that several approaches performed well in several
conditions. Indeed, across simulation conditions, both the Bayesian methods were consis-
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tently among the most accurate with respect to the number of factors to retain. The use of
informative and noninformative priors did not seem to impact the performance of BEFA in
any of the conditions studied here. As has been found in earlier research (REFERENCES),
GLASSO and TMFG were also quite accurate when the interfactor correlation was 0 or
0.4 and the loadings were 0.65 or 0.8. EGA performed less well than several of the other
methods when the interfactor correlation was 0.8. In contrast, COV, VAR, PA, and the
BEFA methods were the most accurate in the highest interfactor correlation condition. It
should again be stated, however, that for loadings of 0.50 or 0.65, even these methods had
relatively low accuracy rates for the number of factors to retain, with values of 0.4 or less.
The MAP, BIC, and RMSEA were, generally speaking, less accurate than the other methods
studied here, except for the one factor case.

4.1. Implications for Practice

The results presented above provide several implications for researchers who need to
determine the number of factors to retain from an EFA applied to categorical indicators.
First, when the quality of the factors is low (i.e., small factor loadings) and factor separation
is low (i.e., large interfactor correlations), no method studied here will provide accurate
results with respect to the number of factors to retain. Second, in the other simulated
cases, GLASSO, BEFA, COV, and VAR were generally among the best-performing methods.
This does not mean that any one of these approaches uniformly yielded the most accurate
results in all cases, but they were consistently among the best performers studied here.
Thus, researchers would generally be well served in using any or all of them to determine
the optimal number of factors to retain in the context of categorical indicator variables.
Third, building upon the prior implication, the results of this study suggest that researchers
consider using multiple techniques to determine the number of factors to retain when
they have categorical indicators. In other words, one might employ GLASSO, BEFA, COV,
and VAR with their data and then examine the results to see if a consensus is reached by
the methods. If so, then this consensus would serve as the optimal solution regarding
the number of factors to retain. The fourth implication from this study is that the use
of informative and noninformative priors with BEFA generally yielded the same results,
meaning that researchers may not need to be particularly concerned with the choice of
priors. Fifth, the number of categories in the indicators did not seem to have an impact
on the performance of these methods when it came to determining the number of factors
to retain. Thus, researchers can feel confident that the techniques that they choose for
this purpose will yield similar rates of accuracy whether the indicators have two or four
categories. Sixth, and finally, for categorical indicators, GLASSO appears to yield more
accurate results regarding the number of factors to retain than TMFG does.

An alternative approach to fitting EFA models that was not considered here, but
which does show promise, is regularized EFA. There exist multiple algorithms to carry
out this analysis, all of which share the goal of identifying only those loadings that are
clearly different from zero. One such approach, sparse estimation via nonconcave penalized
likelihood in the factor analysis model (FANC), involves the use of the minimax convex
penalty function (Hirose & Yamamoto, 2015). This penalty is applied in conjunction with
the standard maximum likelihood estimator, and places a penalty on all factor model
parameters, including loadings. The consequence of this penalty is to drive factor values
down in value, meaning that small loadings will essentially be set to 0. Likewise, the FANC
algorithm places a penalty on the number of factors to be retained. Another regularization
algorithm for determining the number of factors is the principal orthogonal component
threshold (POET), which rests on the assumption of conditional sparsity (Fan et al., 2013).
This assumption asserts that, conditional on a small number of common components, the



Psychol. Int. 2025, 7, 3 18 of 20

observed indicator variables will have small covariances with one another. Of course, the
GLASSO approach used in the current study is also a regularization-based approach for
identifying the latent structure in the data. Comparison of the methods included in this
study is an area that should be examined in future work.

4.2. Study Limitations

As with any study, the current work has limitations that future research should seek
to address. First, the distribution of the observed variables was limited to two or four
categories with symmetric distributions regarding the response probabilities (as seen in
the symmetric thresholds). Future research should extend upon this work by including
indicators with more categories, such as five or six. In addition, future work should also
examine non-symmetric threshold parameters, so that the item response probabilities are
skewed. Using different threshold values for the various indicators would also add to
the literature in this area. The current study simulated data with a pure simple structure.
However, in many real-world situations, indicators are likely to have non-zero loadings
associated with more than one factor. Thus, future research should simulate cases in which
some indicators have non-zero loadings with multiple factors. Finally, future research
should include conditions in which the latent traits are not normally distributed as they
were in this study.

5. Conclusions
Despite the limitations outlined above, the current study extends the literature regard-

ing the number of factors to retain in the context of EFA in a number of ways. First, it
examines several promising new methods (e.g., COV and VAR) in the context of categorical
indicators, and finds these to be effective tools for this purpose. Second, this work reinforces
earlier findings demonstrating the efficacy of using EGA to determine the number of factors.
Third, this study showed that researchers should consider adding Bayesian estimation to
their data analysis toolbox when it comes to fitting EFA models.
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