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Abstract: For the United States, detailed estimates of the number of resident migrants and
the rates of migrant arrival are valuable for understanding population dynamics and for
determining the impact of economic and political changes that influence migration. The
goal of this analysis was to derive estimates of the U.S. foreign-born population and how
this population has changed in recent years, as well as estimates of recent and historical
immigration volumes. Using data from large population surveys (the 2000 U.S. decennial
census and 2001–2019 American Community Survey (ACS)), a Bayesian evidence synthesis
was conducted to pool survey data across years while accounting for various biases and
logical constraints that apply to these data. This analysis produced highly disaggregated
estimates of the foreign-born population residing in the United States over the period
2000–2019, as well as estimates of immigration volume for 1950–2019. These population
estimates demonstrated high in- and out-of-sample predictive performance, with substan-
tially greater precision than that for raw survey estimates. Estimated immigration flows
tracked other available time series, although with higher precision and with the potential
to include undocumented immigration not represented in other immigration data. This
study documents immigration from 100 countries of origin into the United States and
demonstrates how the results of repeated cross-sectional population surveys can be used to
infer migration dynamics that are difficult to measure directly.

Keywords: migration; foreign-born; United States; American Community Survey

1. Introduction
For high-income countries, international migration can represent an important con-

tributor to population growth and a substantial share of the resident population. Changes
in migration rates have accompanied changes in the economic and political environment
in the destination country and migrants’ countries of origin, as well as changes in immi-
gration policy [1–3]. The United States represents the most common destination country
for migrants globally, with the U.S. foreign-born population representing 18% of global
migrant stocks, more than three times greater than that in any other single country [4]. In
2023, 48 million foreign-born individuals resided in the United States, representing 14% of
the U.S. population. Of this 48 million, 26 million are estimated to have entered the country
since the turn of the century, while 16 million have entered since 2010, reflecting major
migrant inflows over recent years [5]. These individuals play important roles across multi-
ple domains of economic and civic life in the United States [6]. While immigration is an
established feature of U.S. population dynamics, overall rates of immigration have changed
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substantially over time, and the mix of countries and world regions represented in succes-
sive immigration cohorts has also varied. In the early part of the 20th century, migrants
to the United States were primarily from European countries. This pattern evolved with
increasing migration from Asian and Latin American countries in more recent years, with
individuals from these regions representing 42% and 39% of all new U.S. residents entering
the country after 2010, respectively [5,7]. For some countries, migration to the United States
has followed sharp changes driven by U.S. foreign policy, exemplified by the successive
waves of immigration from Vietnam starting in the 1970s in the wake of the Vietnam War,
which was preceded by low rates of immigration from this country [8]. The question of
how migrants impact U.S. society has been the subject of substantial academic and public
discourse historically [9,10], as well as more recently [11], and evidence on the changing
composition of the U.S. foreign-born population is a critical input for these discussions.

For countries that receive substantial numbers of migrants, detailed estimates of the
sizes and trends in the foreign-born resident population have many potential applications,
including planning the provision of services for these individuals, gauging the impact
of immigration policy, and generating evidence on other determinants of migration. For
the United States, tabulations of foreign-born population stocks are routinely provided
by the U.S. Census Bureau. However, these estimates may not stratify results according
to all the dimensions that may be important for decision-making, or may be reported in
categories that are overly broad for a particular use. Public-use microdata are also available
for many of the large population surveys conducted in the United States, but while these
datasets allow a high level of disaggregation, the sampling uncertainty associated with ‘raw’
estimates calculated directly from these data can be substantial [12]. Moreover, evidence
on foreign-born immigration flows is substantially weaker than evidence on current stocks,
with direct estimates of individuals legally admitted to the United States [13] excluding
undocumented migrants, and indirect estimates back-calculated from the time series of
population stocks affected by uncertainty around emigration volume.

The best current data on the foreign-born resident population come from the American
Community Survey (ACS), which collects data on a large population-based sample of the
U.S. resident population on an ongoing basis, with annual data releases [14]. The ACS
collects a range of socio-economic and demographic data on sampled individuals, including
information on ancestry, family relationships, citizenship status, education, languages
spoken, present and past locations of residence, selected disabilities, employment, income,
and household characteristics. The content and wording of these surveys closely match
variables previously collected on the ‘long form’ of the decennial U.S. census, which
the ACS has largely replaced. For the ACS, the foreign-born population includes legal
immigrants (‘green-card’ holders), legal non-immigrants (temporary migrants), asylees
and refugees, and undocumented migrants as long as they meet survey criteria for current
residence. Early variants of the ACS were introduced from 2000 to 2004, and the survey
has been conducted in a standardized format since 2005. For the year 2000, the 5% sample
of the decennial census provides similar information on country of origin and other basic
demographic data.

Despite the large sample size of the ACS, there is substantial sampling uncertainty
for detailed population estimates. The errors induced by this sampling uncertainty can be
revealed by following a single immigration cohort over time. While population estimates
for an immigration cohort should decline over time (as individuals exit the cohort due to
death or emigration), the raw data show periods of apparently increasing populations. For
example, the raw population estimate for the 2000 entry cohort from the Philippines (the
country of origin with the fourth largest number of U.S. residents in the 2019 ACS) increased
from 38,000 to 49,000 between 2001 and 2002 and from 46,000 to 59,000 between 2016 and
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2017. Between 2001 and 2019, 10 of 18 years featured apparent population increases despite
this being a closed cohort. These estimation errors are proportionally larger for countries
with smaller resident populations and are also seen with other population attributes—for
example, in the 2000 entry cohort from Moldova, the average age from the raw survey data
declined from 50 years old in 2006 to 26 years old in 2007 before rising to 37 years old the
next year.

In addition to random variation, there are also systematic artifacts apparent in ACS
survey responses. For example, reported years of entry show periodic spikes, with foreign-
born respondents being 34% more likely to report entering in the first year of the decade
(1960, 1970, 1980, 1990, 2000, or 2010) than in the years immediately before or afterwards.
Similar but smaller spikes are observed for ‘half-decade’ years (1955, 1965, etc.), with
respondents being 14% more likely to report entering the United States in these years than
in the years immediately before or afterwards. It is difficult to explain these periodic spikes
as resulting from real immigration trends, and they are more likely caused by some bias
in terms of how the year of entry is reported or recorded. The magnitude of these spikes
makes it difficult to distinguish real changes in immigration volume from the reporting
artifacts in the raw data.

The objective of this analysis was to propose a novel approach for generating estimates
of the number of foreign-born individuals living in the United States, simultaneously
stratified by several dimensions to provide high-precision estimates of the U.S. foreign-
population for a large number of population strata, while minimizing sampling uncertainty
and adjusting for reporting biases associated with available survey data. This analysis was
additionally designed to produce estimates of migration into the United States by country,
year, and age for the period covered by survey data, as well as past years. To achieve these
objectives, this study combined 20 years of survey data with a mechanistic model of foreign-
born population dynamics. In this model, each immigration cohort (by country, entry year,
and age) was followed over time, with mortality rates based on published lifetables and
emigration rates estimated from the survey data. As a result, the population of each
immigration cohort was allowed to decline over time based on established components of
population changes. By placing logical and probabilistic constraints on how individuals
enter and exit the foreign-born population, the analytic approach was able to reduce the
sampling uncertainty associated with the survey estimates and adjust for sources of bias in
these data.

The results of this study represent precise estimates of the number of foreign-born
individuals living in the United States for calendar years 2000–2019 stratified by multiple
individual-level characteristics (country of origin, year of age, year of entry to the US, and
calendar year). The analysis also provides annual estimates of foreign-born individuals
newly entering the U.S. resident population, a measure of annual immigration volume that
may have advantages compared to other approaches. This paper describes the statistical
approach used to model population changes and generate results, reports tests of in- and
out-of-sample predictive performance, provides the population estimates, and highlights
applications for these estimates. While the focus of this study was the United States
foreign-born population, the approaches developed through this study may be applicable
to other countries that collect cross-sectional population data though large surveys or
administrative records.

2. Materials and Methods
2.1. Data

The primary data source used for this analysis was the America Community Survey
(ACS). We used ACS public-use microdata samples (PUMS) from surveys conducted from
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2001 to 2019. We also used the 5% sample of the 2000 decennial census, which represents
5% of all eligible individuals. PUMS data are created from original survey responses, with
edits made to impute missing, illegible, or illogical values and to prevent identification of
survey respondents [15]. ‘Foreign-born’ individuals were defined as survey respondents
reporting a place of birth outside of the U.S. or U.S. territories, excluding individuals born
to U.S. parents. To be a U.S. resident (and therefore be included in the ASC survey sample),
an individual must have lived at their U.S. address for >2 months or anticipate living at
that address for >2 months. Variables for place of birth, year of U.S. entry, and current
age were extracted from survey data, in addition to analysis weights provided to inflate
the individual samples to obtain national population estimates. The sum of these analysis
weights was taken to represent the ‘raw’ population estimate for any given stratum.

The variable for year of entry into the United States showed irregular patterns for
entry years prior to 1950 resulting from census statistical disclosure controls, and this
variable was therefore bottom-coded at 1949. Similarly, the variable for current age showed
irregular patterns for advanced ages and was thus top-coded at 91. ISO 3166-1 alpha-3
codes (ISO3 codes) were used to identify countries. Individuals were assigned to a single
ISO3 code according to their survey country-of-origin code. For survey country-of-origin
codes describing a dependent territory without an ISO3 code, individuals were assigned to
the governing state of the territory. All other individuals that could not be mapped to a
unique ISO3 code were pooled into a residual category. In addition, countries becoming
independent states after 2000 (Kosovo, Montenegro, Serbia, South Sudan, and Timor–Leste)
were pooled with the state they were part of as of 2000 (Yugoslavia, Sudan, and Indonesia).
Using the country-of-origin variable, an additional classification was created to group
individuals into world region of origin using the World Bank regional classification (East
Asia and Pacific, Europe and Central Asia, Latin America and the Caribbean, Middle
East and North Africa, North America, South Asia, and Sub-Saharan Africa). Using these
classifications, a combined dataset of raw survey estimates was created from the individual-
level PUMS data for all possible combinations of country or region of origin, current age,
year of entry, and survey year.

2.2. Analysis

Analyses were undertaken to obtain population estimates for the U.S. foreign-born
population stratified by country or region of origin, current age, year of entry, and survey
year. These included 76,830 unique values for each country or region of origin. Results
were estimated for the overall foreign-born population, for each world region of origin, and
for each of the top 100 countries of origin (ranked according to U.S. resident population
size for each country of origin, averaged over the period 2000–2019).

2.2.1. Immigration Cohort Model

A compartmental stock–flow model was developed to represent the population dy-
namics of the foreign-born U.S. population from 1950 to 2019. This model allowed (i) an
existing stock of foreign-born individuals in 1950, (ii) yearly additions to the foreign-born
population in each year from 1950 to 2019 due to immigration, and (iii) yearly exits from
the foreign-born population due to emigration or death. In this model, individuals residing
in the United States in a given calendar year were stratified by year of age and entry
year. The number of individuals in a particular immigration cohort (defined by year and
age of entry) present in the United States in a given year was assumed to be equal to
the number of individuals in the same immigration cohort in the previous year minus
exits to emigration or death. Figure 1 shows a schematic of this stock–flow model for the
1950 immigration cohort.
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Figure 1. Schematic of the estimation model for the 1950 immigration cohort. ‘Age’ = current age;
‘YOE’ = year of entry; ‘Year’ = current year; ‘E+M’ = emigration and mortality. Rectangles represent
a population in a given migration cohort (by age, year of entry, and calendar year). Solid arrows
represent population flows due to immigration, emigration, aging, and death.

2.2.2. Initial Population

The initial population for the model was composed of all foreign-born individuals
present in the United States at the start of 1950 stratified by age. Data for cohorts immi-
grating to the United States before 1950 were combined into a single cohort, as this group
represents a small fraction of the current foreign-born population (approximately 1%).

2.2.3. Immigration

The total immigration volume each year from 1950 to 2019 was modeled as a geo-
metric random walk, and the age distribution of immigrating cohorts was represented
using penalized B-splines [16,17]. This age distribution consisted of the following two
components: a one-dimensional spline representing the average age distribution across all
entry years and a two-dimensional spline surface representing temporal deviations from
this average pattern.

2.2.4. Emigration and Mortality

Individuals exited the resident foreign-born population through mortality and em-
igration. Evidence on mortality rates by single year of age was drawn from recent U.S.
life tables [18]. Variation in these age-based mortality rates was modeled via a penalized
B-spline to allow for deviations in mortality rates between the general population and indi-
vidual immigrant groups. In addition, age-specific mortality rates were assumed to decline
log-linearly over time based on trends reported in decennial life tables for 1950–2010 [18].

Exits due to emigration were assumed to decline with increasing time since en-
try [19,20], with the emigration rate allowed to decline smoothly up to 15 years after
entry to the US, after which it was held fixed.
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2.2.5. Misclassification of Reported Age and Entry Year

Population estimates calculated directly from the survey data showed periodic spikes
in the population distribution as a function of reported age and entry year (Supplementary
Materials, Figure S4). For both of these variables, large spikes were apparent, coinciding
with the end of each decade, and smaller spikes were apparent at mid-decades. In other
studies, implausible patterns in ACS results have revealed systematic biases due to misre-
porting by survey respondents [21,22], and it was hypothesized that the periodic effects
observed in the raw estimates resulted from misreporting by survey respondents, with the
true value for age and/or entry year being rounded to the nearest decade or mid-decade.
A measurement–error model was used to correct for this misclassification.

2.2.6. Undercounting of Foreign-Born Populations

Previous research suggests that raw estimates derived from the ACS underestimate
true population sizes for foreign-born populations [23]. While analysis weights provided
for the ACS are adjusted to account for under- or over-reporting, the ACS is only controlled
by age, sex, race, and Hispanic origin, not nativity. The extent of undercounting is thought
to be greater for recent immigrants, undocumented migrants, immigrants of Hispanic
origin, younger age groups, and older ACS survey years [23–25]. The magnitude of this
bias cannot be estimated from the survey data alone, and evidence of undercounting is
generally derived from comparison with other data sources. Using estimates of the size
of the ACS undercount reported by the U.S. Census Bureau [23], the analysis allowed for
underreporting in the PUMS data so that final analytic estimates would provide an estimate
of the true population size. These adjustments were specified as inflation factors that varied
with time since entry (higher for more recent immigrants), country of origin (higher for
countries in Latin America and the Caribbean), and survey year (higher for earlier survey
years with smaller sample sizes). For countries in Latin America and the Caribbean, an
average undercount rate of 5.0% was assumed for survey years 2005–2019, and an average
undercount of 2.0% was assumed for other countries over the same period, consistent with
recent Census Bureau estimates [23].

2.3. Estimation

A Bayesian approach was used to implement the analysis. First, formulae describing
the relationship between model parameters and population totals were defined, and a
likelihood function was constructed for the survey data. In these likelihoods, the raw
population estimates were calculated as the sum of analytic weights for each stratum in
the analysis. Second, probability distributions were defined for each model parameter.
In general, weakly informative priors [26] were specified, except where substantial prior
information was available, such as with age-specific population mortality rates. Final
parameter values were estimated as the product of the prior distribution and the likelihood
function, following conventional Bayesian approaches. These fitted parameter values were
used to calculate the population estimates. The analysis was conducted separately for each
country and region of origin.

Model estimates for the surveyed population (reflecting any misreporting and under-
reporting) were compared to the raw survey values to validate the estimation results (next
section). For each country or region of origin, ‘true’ values were also produced, which were
adjusted to remove the effects of misreporting and underreporting. In addition to these
population estimates, the analysis produced estimates of annual entries to the population
covered by the ACS and census as a measure of immigration volume.

Data processing was conducted in R v4.0.2 [27], and the model was fitted using
adaptive Hamiltonian Monte Carlo sampling, as implemented by the Stan probabilistic
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programming software v2.21.2 [28,29]. The sampler was run with 3 chains of 2000 iterations
each. Each country was fit separately, and the first 1000 draws were discarded as warm-up
values. The remaining samples were thinned to retain every 5th draw, producing a posterior
sample of 600 parameter sets for each country. The mean of these posterior samples was
used to create point estimates for each population group of interest, and equal-tailed 95%
uncertainty intervals were calculated to quantify uncertainty in estimates. Full details of
the technical specification of this analysis, including model equations, prior distributions,
and likelihood function, are provided in the Supplementary Materials.

2.4. Cross-Validation

To validate the estimation approach, how well the model could predict data not
used for model fitting (“out-of-sample predictive performance”) was assessed [30,31]. To
do so, the model was re-estimated for a sample of seven countries with selected survey
years removed, testing the ability of the estimation procedure to reproduce the population
estimates for the held-out survey years. This block cross-validation approach was adopted
to provide a more rigorous test of predictive performance (as compared to assessing
predictive performance in randomly chosen hold-out samples), giving the potential for
non-independence of population data within each survey year [32,33]. The countries used
for this validation exercise—Fiji, Mexico, Pakistan, Peru, Poland, Somalia, and Vietnam—
were chosen to represent a range of world regions and resident population sizes, which
may present different estimation challenges. For each of these countries, the model was
re-estimated three times, holding out data for the years 2005, 2010, and 2015, and fitting
the model to the remaining data. These models were refit a fourth time, holding out data
for the last two survey years (2018–2019) to assess the ability of the estimation approach to
predict future population values.

Results from these analyses were compared to the data from survey years not used
for model fitting to assess out-of-sample predictive performance. Estimated values and
held-out survey data were compared visually, plotting the estimated population as a
function of each dimension of interest (year of entry, age at entry, and current age) in
order to identify systematic deviations that might suggest a problem with the estimation
approach. In addition, standardized residuals were calculated by dividing the estimation
residuals (raw survey estimate for a unique combination of place of birth, year of entry,
and current age minus the modeled estimate for the same value) by the standard error
estimates provided by the survey methodology [34]. Theoretically, these standardized
residuals would have a standard deviation of 1.0 for a model that perfectly predicted the
mean of each observation. The fraction of instances in which the survey estimate was
predicted to be zero (i.e., no individuals with a given set of characteristics included in
the sample) was also calculated and then compared to the empirical distribution from the
survey. With a well-performing model, the modeled probabilities should reproduce the
observed frequencies. Finally, logged values for modeled vs. raw population estimates
were plotted to assess any estimation errors associated with the magnitude of population
estimates. With a well-performing model, the points on these scatterplots should cluster on
the diagonal. The out-of-sample predictions were also compared to the estimates obtained
in the main analysis using rank correlation and the mean absolute difference (calculated as
a percentage of the main analysis value) to characterize the differences between the two
sets of estimates.

Two additional tests of validity were performed. Firstly, the model was re-estimated
having excluded all data for survey years 2001 to 2005 for each of the seven test countries
described above (Fiji, Mexico, Pakistan, Peru, Poland, Somalia, and Vietnam). Before 2006,
the ACS samples were substantially smaller than the final size (approximately 1% of the
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U.S. population) and excluded individuals in group quarters. Including the data from these
earlier ACS rounds provided additional information for the analysis, although doing so
could potentially bias the results due to the different populations covered by the pre-2006
ACS rounds compared to later rounds. The results for 2001–2005 from this analysis were
compared to those obtained in the main analysis, quantifying the agreement between
these estimates using rank correlation and the mean absolute difference. Secondly, the
model was re-estimated using a dataset that excluded individuals with imputed values
for at least one of the variables used in the analysis. This imputation is performed by the
U.S. Census Bureau when an individual’s response on a given survey question is missing
or illegible or has inconsistent values. While this imputation facilitates data analysis,
systematic errors in the imputation approach could lead to biased inference. To implement
this sensitivity analysis, a new dataset was created that excluded individuals with imputed
variables, and then the analytic weights were inflated by a constant proportion to match
the original population estimate for each survey year. Using these adjusted datasets,
population estimates were calculated for each of the seven test countries (Fiji, Mexico,
Pakistan, Peru, Poland, Somalia, and Vietnam). These estimates were compared to those
obtained in the main analysis, with differences quantified using rank correlation and the
mean absolute difference.

3. Results
3.1. Comparison of Modeled Results to Raw Survey Estimates

Figure 2 shows the total population estimates for 2019, comparing modeled estimates
for the true population (i.e., controlling for undercounting and misclassification of de-
mographic data by survey respondents) to ‘raw’ survey estimates, which were estimates
derived directly from the PUMS data by weighting observations by the analysis weights
provided. As might be expected, the modeled population estimates for countries of origin
with large resident populations (Figure 2, lower panel) were very similar to the raw survey
estimates, as for these populations, the raw estimates had low sampling uncertainty relative
to the size of the population. For countries of origin with smaller resident populations
(Figure 2, upper panel), there were more substantial differences between modeled and raw
estimates, reflecting greater sampling uncertainty in the results of an individual ACS round.
As an example, population estimates for immigrants from Switzerland had a noticeable
difference between modeled and raw population estimates for 2019 (raw estimate = 43,600,
modeled estimate = 38,800 [95% uncertainty interval 37,900; 39,800]). Compared to the
average population estimate from the three prior survey years, the raw 2019 population
estimate for Switzerland was 23% higher, with an increase of 9700 compared to that the
year before. While this could signal a major uptick in new immigrants compared to death
and emigration, the number of individuals from Switzerland in their first year in the United
States was only 1500 in the 2019 ACS, implying a much lower immigration rate than would
be needed to explain this result. This suggests that the high 2019 population estimate for
Switzerland is simply a consequence of sampling uncertainty. The modeled estimate, by
incorporating evidence across the 20 survey years, was robust to sampling uncertainty in
individual survey years. This effect of smoothing implausible deviations in the time trend
resulted in a lower modeled population estimate for 2019, with essentially no change in
the population total (a 0.4% (−0.3, 0.9) decrease) compared to the modeled estimate for
the preceding year. Figures comparing the time series of modeled population estimates
to raw survey values for 2000–2019 are provided in the Supplementary Materials. The
Supplementary Materials also include figures comparing modeled to raw estimates for
the 2019 resident population distributed by current age, age at entry, and year of entry
(Figure S9).
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Figure 2. Total population estimates for 2019, comparing modeled true population estimates to raw
survey estimates, for the 100 countries of origin by population size. Estimates ordered by modeled
population size. Population estimates shown on a log-scale. Country indicated by ISO 3166-1 alpha-3
(ISO3) code.

While the modeled estimates appear to have some advantages for estimating total pop-
ulation sizes for countries with smaller resident populations, the utility of these estimates is
more obvious when comparing estimates for more highly disaggregated population strata.

Figure 3 compares modeled and raw 2019 population estimates for three countries
(Somalia, Mexico, and Vietnam) stratified by single year of age and single year of entry.
Panel A shows heatmaps of population density created from raw survey values, where
the effects of sampling uncertainty can be seen. In this figure, each cell represents a single
population stratum (defined by year of age and years since entry), and warmer colors
indicate greater populations within that stratum. An empty cell indicates that no one from
that stratum was included in the ACS survey for that year. Even for Mexico—the country
of origin with by far the largest resident population—there are multiple strata where no
individuals were included in the survey, and sampling uncertainty can be observed in the
variation in color between adjacent cells. Vietnam has a smaller resident population, and
while major features of the population distribution can be seen, there is substantial noise
apparent in the raw values. For Somalia—a country whose resident population is less than
1% of Mexico’s—there is little that can be learned from the raw survey values, with the
majority of strata being empty. Panel B shows heatmaps of population density created
from the modeled estimates. By incorporating evidence from across the 20 survey years,
these modeled estimates provide lower variance estimates of the population distribution,
demonstrating patterns that could be difficult to observe in the raw values.



Populations 2025, 1, 3 10 of 21

Populations 2025, 2, x FOR PEER REVIEW 10 of 21 
 

 

1% of Mexico’s—there is little that can be learned from the raw survey values, with the 
majority of strata being empty. Panel B shows heatmaps of population density created 
from the modeled estimates. By incorporating evidence from across the 20 survey years, 
these modeled estimates provide lower variance estimates of the population distribution, 
demonstrating patterns that could be difficult to observe in the raw values. 

 

Figure 3. Distribution of the 2019 U.S. resident population by single year of age and single year since 
entry for immigrants from Somalia, Mexico, and Vietnam comparing raw (A) and modeled (B) sur-
vey estimates. The color gradient demonstrates differences between high population numbers 
(warmer colors) and lower population numbers (cooler colors). Grey cells indicate illogical values 
(years since entry greater than current age). Empty (white) cells in Panel (A) indicate that no one 
with those characteristics were included in the 2019 ACS sample. 

There are alternative approaches that could reduce sampling uncertainty in these 
small-group estimates. In particular, more precise estimates could be obtained by pooling 
categories of interest together [35] and therefore using a coarser grid to stratify the popu-
lation, such as by using 5- or 10-year-wide bins for age and years since entry. However, 
such coarsening could obscure relevant features of the distribution, such as the spike in 
the population from Vietnam reporting 41 years since entry. This corresponds to an entry 
year of 1975, with over 10 times the number of individuals estimated to share this entry 
year in 2019 compared to 1974 or 1976. Using wider bands to categorize age and years 
since entry would not fully obscure such a major immigration cohort, but potentially 

Figure 3. Distribution of the 2019 U.S. resident population by single year of age and single year
since entry for immigrants from Somalia, Mexico, and Vietnam comparing raw (A) and modeled
(B) survey estimates. The color gradient demonstrates differences between high population numbers
(warmer colors) and lower population numbers (cooler colors). Grey cells indicate illogical values
(years since entry greater than current age). Empty (white) cells in Panel (A) indicate that no one with
those characteristics were included in the 2019 ACS sample.

There are alternative approaches that could reduce sampling uncertainty in these
small-group estimates. In particular, more precise estimates could be obtained by pooling
categories of interest together [35] and therefore using a coarser grid to stratify the pop-
ulation, such as by using 5- or 10-year-wide bins for age and years since entry. However,
such coarsening could obscure relevant features of the distribution, such as the spike in
the population from Vietnam reporting 41 years since entry. This corresponds to an entry
year of 1975, with over 10 times the number of individuals estimated to share this entry
year in 2019 compared to 1974 or 1976. Using wider bands to categorize age and years
since entry would not fully obscure such a major immigration cohort, but potentially useful
information would be lost. Population estimates for these highly disaggregated population
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strata, for calendar years 2000 to 2019 and for each country or region of origin, are included
in the Supplementary Materials.

3.2. Validation and Sensitivity Analyses

Out-of-sample predictive performance was used to assess the validity of the estimation
approach. Figure 4 compares modeled and raw 2015 population estimates for three example
countries (Somalia, Mexico, and Vietnam). For each country, estimates were produced by
a model fitted to the time series of data excluding 2015. Two sets of modeled estimates
are shown—estimates of the ‘true’ resident population (dashed blue lines), which were
adjusted for biases introduced by misreporting of demographic characteristics by survey
participants, as well as under-coverage of the ACS, and estimates of the survey population
(solid lines and shaded regions), which were not adjusted for these effects and are therefore
directly comparable to raw survey results. These figures show the modeled estimates
closely following the systematic patterns apparent in the raw survey estimates (points).
The prediction intervals, which should contain approximately 95% of the survey estimates
if the estimation approach performs correctly, also appear to be well calibrated. In the
Supplementary Materials (Figure S7), similar comparisons are shown for seven countries
(Fiji, Mexico, Pakistan, Peru, Poland, Somalia, and Vietnam) and each of the three hold-out
years (2005, 2010, and 2015).

In addition to comparing out-of-sample performance graphically, standardized residu-
als were calculated to quantify differences between raw and modeled population estimates.
Across the 21 country–year comparisons considered in the out-of-sample validation, the
standard deviation of these standardized residuals ranged from 0.23 to 1.67, with a mean
value of 1.09. These standard deviations falling below 1.0 (theoretically optimal predictive
performance) would normally imply over-fitting of the observed data, yet this is not possi-
ble as the validation data were not used to fit the models. Values lower than 1.0 were only
observed for countries with small resident populations (Fiji and Somalia), and therefore, the
most likely explanation for this finding is that the method provided by the ACS to calculate
standard errors is conservative in the context of small population counts. Similarly, other
approaches used to assess model performance (log–log scatterplots of modeled vs. raw
population estimates, comparison of modeled vs. predicted probabilities of an individual
is a given stratum being included in the survey) did not reveal any major problems with
the estimation approach (Supplementary Materials, Figure S7). When the out-of-sample
predictions were compared to the estimates from the main analysis, the rank correlation
was found to be >0.999 for each of the 21 country–year comparisons. The mean absolute
difference (calculated as a percentage of the value obtained in the main analysis) varied
from 0.9% to 4.7%, with a mean of 2.1%.

Out-of-sample predictive performance was somewhat worse when data for 2018 and
2019 (the most recent 2 years of data) were excluded from model fitting (Supplementary
Materials, Figure S8). While the standardized residuals were relatively similar (standard
deviations ranging from 0.25 to 2.16, with a mean value of 1.22), the rank correlation with
estimates from the main analysis was lower (range 0.992–0.998), and the mean absolute
difference varied from 3.3% to 17.7%, with a mean of 6.5%. This reduction in predictive
performance was primarily observed in the estimates for the cohorts entering the United
States during the hold-out years (2018–19), for which the mean absolute difference ranged
from 15.2% to 221% (average 60.8%) across the 14 country–year comparisons.
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Figure 4. Predicted distribution of survey estimates for Somalia, Mexico, and Vietnam in 2015,
estimated with 2015 data held out. Prediction intervals represent expected 95% intervals for the data
values. Uncertainty intervals represent expected 95% intervals for the mean estimate. (A) represents
population estimates by year of entry into the United States. (B) represents population estimates by
age at entry into the United States. (C) represents population estimates by current age.

As an additional test of validity, the model was re-estimated having excluded all
data for survey years 2001 to 2005 for each of the seven test countries and then used to
predict values for the excluded years. For each of the 35 country–year combinations in
this comparison, the rank correlation between the two sets of estimates was consistently
above 0.997, and the mean absolute difference ranged from 2.4% to 8.8% of the population
estimate from the main analysis (average 5.0%).
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As a final sensitivity analysis, the model was re-estimated using a dataset that ex-
cluded individuals with imputed or edited data (15.1% of all observations). Using this
approach, population estimates were calculated for each of the seven test countries. For
each of the 140 country–year combinations in this comparison, the rank correlation be-
tween the two sets of estimates was consistently above 0.98. However, the mean absolute
differences ranged from 8.6% to 43.5% of the population estimate from the main analysis
(average 17.4%), indicating substantial differences between the two sets of estimates in
some situations. In this comparison, the mean absolute differences were highest for Somalia,
and for all countries, they were lower in more recent years (ranging from 8.6% to 28.2% in
2019) than in earlier years.

3.3. Volume of Migration

With the estimation approach used, the relationship between population sizes in
successive survey years was explicitly modeled via the components of population changes.
In the analytic model, entries (immigration) and exits (death, emigration) from the resident
foreign-born population were allowed to vary as a function of current age, years since entry,
country or region of origin, and calendar year. With time-series data on total populations,
the absolute entries and exits from the population totals cannot be uniquely identified,
with only the year-on-year difference between these quantities known (entries and exits
from the population could be increased or decreased by matching amounts for the same
net change). However, using data on years since entry allows these two processes to be
distinguished—by definition, individuals can only enter an immigration cohort with years
since entry equal to zero, and for subsequent years (i.e., with years since entry > 0), the only
change in the cohort will be through exits to death or emigration. This was exploited to
derive estimates of the number of individuals newly entering the foreign-born population
each year as a measure of immigration volume for each country and region of origin. By
assuming that emigration rates were only influenced by current age, country or region of
origin, and years since entry and that age-specific mortality rates followed a well-defined
time trend, it was possible to estimate immigration totals for the full period from 1950 to the
present. Figure 5 presents estimated annual immigration volumes for the seven example
countries used for out-of-sample predictive checks, as well as for the total foreign-born
population. As these estimates were derived from models fit to ACS data, these estimates
represent the number of individuals entering the country to become a ‘resident’ according
to the definitions used in the ACS (i.e., current or anticipated residence at the current
address for more than two months).

The modeled immigration estimates can be compared to those from other approaches
for estimating immigration flows. In addition to the modeled estimates, Figure 5 presents
the numbers of new legal permanent resident (LPR) admissions per year (red line). These
data are reported in a standardized format by the Department of Homeland Security Office
of Immigration Statistics and are commonly used to describe immigration rates. However,
using these data to make inferences about the level and trend of total immigration faces
several challenges. The first of these is the potential for delays between year of entry
to the country and year of obtaining LPR status, with approximately half of all LPR
immigrants entering the United States several years before obtaining LPR status (termed
‘change-of-status’ LPR applications). This time lag can distort estimated immigration
trends, particularly where there are events that produce fluctuations in approved ‘change-
of-status’ LPR applications that are unrelated to actual immigration rates. A prominent
example of this is the Simpson–Mazzoli Act of 1986, which led to a large number of
previously undocumented residents gaining LPR status over a short period of time. This
produced a large spike in the LPR time series around 1990–1991, which is visible for
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several of the countries shown in Figure 5. Another drawback of using LPR data to track
immigration flows is the exclusion of undocumented migrants, as for some countries of
origin, particularly those in South and Central America, a substantial fraction of migrants
are thought to be undocumented. Others will enter and reside in the country legally but
hold non-immigrant visas and therefore not be included in the LPR data. As the modeled
estimates are based on the ACS, they will include legal immigrants (LPR), legal non-
immigrants (temporary migrants), humanitarian migrants, and undocumented migrants
as long as they meet survey criteria for current residence [9]. The difference between LPR
immigration and the more inclusive modeled estimates can be seen most prominently in
Figure 5 for Mexico and all immigrants, where the LPR time trend is substantially lower
than that of the modeled estimates. For other countries, particularly Vietnam, the LPR time
series and modeled estimates track each other closely.
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Figure 5. Estimates of annual immigration rates for seven example countries, as well as all
countries of origin combined, compared to other measures describing immigration volume.
LPR admissions = reported number of individuals granted U.S. entry as a legal permanent resi-
dent. ASC = American Community Survey. ACS estimates for new immigrants (dotted blue line)
doubled since estimates for individuals entering the current year will under-estimate total immigrants
for that year by approximately 50% given the rolling survey design. Uncertainty intervals (light blue)
represent expected 95% intervals for the mean estimate.

The raw ACS estimate for individuals who reported entering the country in the same
year as the survey was conducted provides another approach to estimating immigration
flows (Figure 5, green line). A major challenge for this approach is the need to adjust for the
fact that this population is only partially observed in the ACS—as the ACS is conducted
continuously throughout the year, interviews conducted earlier in the year will exclude
individuals entering the country later in the year. In Figure 5, this undercount was adjusted
for by simply doubling the raw values, which would be appropriate if migrants entered
the country at a constant rate throughout the year and immediately met the ACS inclusion
criteria. However, it is not clear that these assumptions hold. Moreover, the raw ACS values
exhibit increased variance compared to the modeled values, which is particularly apparent
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for smaller countries of origin like Fiji, and provide no information on immigration flows
in years prior to the observed survey period.

Immigration trends were calculated for each country and region of origin, and Figure 6
reports recent immigration trends for all immigrants grouped into world regions (according
to World Bank regional groupings). These results show differential trends between world
regions, with progressive growth from South Asia and Sub-Saharan Africa compared to
other world regions. Some systematic patterns are likely to result from geopolitical events,
with immigration from all world regions declining sharply between 2000 and 2002, possibly
as a result of the September 11 terrorist attacks. More recently, a major and sustained
decline in immigration from the Latin America and Caribbean region occurred between
2000 and 2005, producing a greater than 50% absolute reduction in annual immigration,
with this decline almost completely reversed by growth over the following 5-year period.
This major decline and the subsequent rebound were not apparent for other world regions
and were not seen in the LPR estimates (Figure 5), although immigration from Europe
and Central Asia showed a more modest decline and recovery over the same period. By
2019, annual immigration was estimated to have reached its highest level since 1950 (and
potentially highest ever), driven by migration from the Latin America and Caribbean region
as well as the East Asia and Pacific region, both of which reached peak immigration rates
in 2019.
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4. Discussion
This paper reports highly disaggregated estimates of the foreign-born population

residing in the United States for the period 2000–2019 stratified by country and region
of origin, current age, and year of entry to the US. By pooling estimates across several
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survey years, these estimates are substantially more precise than estimates calculated
directly from the raw survey data. The approach used to obtain more precise estimates—
following individual immigration cohorts through the time series of survey data and
assuming smooth distributions for various demographic characteristics—differs from
variance reduction approaches commonly applied to these data, which involve aggregating
data within larger categories [36] or across multiple survey years via the ACS 3-year and
5-year estimates. While these approaches can successfully reduce variance, they can also
obscure important features of the data in those circumstances where outcomes of interest
vary across the categories being aggregated. As well as providing improved precision, the
modeled population estimates adjust for biases in the ACS data, including the tendency
for some survey respondents to round their demographic data to the nearest decade
and under-coverage of the foreign-born population, particularly in the early years of the
ACS. In addition to these population estimates, estimates of new entries to the resident
foreign-born population are also reported as a measure of annual immigration volume.
These estimates are inclusive of undocumented and temporary migrants, populations for
whom immigration and residency estimates are of substantive interest but are difficult to
obtain [37–40].

The Bayesian statistical approach taken by this analysis is becoming more commonly
used to produce migration estimates, allowing the synthesis of multiple evidence sources,
representation of various artifacts in source data, and quantification of uncertainty in
resulting estimates [41,42]. Prior applications of this approach have focused on individuals
countries and regions [43–45] or have generated global estimates for all county–country
dyads [41,42,46]. Most Bayesian applications have used regression models to pool data,
with migration estimates calculated from a linear function of chosen predictors. For
example, Cohen et al.’s approach to producing international migration projections for
any country–country dyad fit a generalized linear model to migration data reported by
11 countries, with final estimates calculated as the product of the population of origin
and destination countries, the area of the origin country, and the distance between the
two counties, each raised to a power term estimated from the data [46]. In contrast, this
analysis specified a mechanistic model relating migration estimates to study data. This
difference stems from the data available for estimation—while these other studies used
data on migration flows directly, the present study inferred migration indirectly based on
cross-sectional population estimates, an approach previously used by Aparicio Castro et al.
to infer migration flows between South American countries using census data [45]. As
compared to other studies, the present analysis did not use data on known determinants of
migration (economic and social factors, immigration policy) [1–3] as part of the estimation
approach. While incorporating this evidence may have produced more precise estimates,
it would have undermined the utility of the resulting estimates for investigating these
migration determinants.

There are multiple potential uses for the detailed population estimates produced by
this analysis—by improving the precision of stratified population estimates, patterns and
temporal trends in these populations can be more easily observed, which may suggest
directions for further investigation. Changes in the resident population for individual coun-
tries of origin are difficult to discern from the raw ACS data, particularly for countries with
small resident populations, yet these trends can be reported directly from the new estimates.
Similarly, changes in age distribution can also be reported with greater precision using the
new estimates. These outcomes are useful for describing the changing composition of the
foreign-born population residing in the United States. Similarly, the results for immigration
volume have multiple applications for understanding who is entering the United States
to live and how this has changed over time. In particular, by comparing the immigration



Populations 2025, 1, 3 17 of 21

flows estimated by this analysis to reported data on rates of legal migration [13], it is
possible to estimate migration rates for undocumented individuals, extending approaches
developed in other analyses to estimate current population volumes for undocumented
individuals [37,47,48].

In addition to describing patterns and trends, the disaggregated population estimates
can also be used as inputs into other analyses. The initial motivation for this study was to
obtain population denominators for an epidemiological assessment of infectious disease
burden in the foreign-born U.S. population [49], where it was expected that disease burden
would likely differ according to several of the demographic characteristics considered in
this study. It is likely that other analyses would also benefit from fine-grained data on
population distributions for this group, providing population denominators with which
measures of the incidence or prevalence of a condition of interest can be calculated [50–52].
Similarly, estimates of immigration rates can provide inputs into analyses that seek to
identify the underlying causes of changing migration rates [53–55], or that investigate
how immigration has influenced other outcomes within the United States [56,57]. Finally,
by investigating situations when model fit to data is poorer than predicted by sampling
uncertainty, it could be possible to identify reporting artifacts or biases affecting how
current data are being interpreted, which could allow progressive improvements to survey
approaches. Apart from the estimates themselves, the estimation approach developed in
this study can be implemented in other county settings and will be applicable in situations
where time-series cross-sectional data are available on the foreign-born population [58] and
where sampling uncertainty is sufficiently large that reduced-variance population estimates
are needed.

This study has several limitations. Some issues may be inherited from the data source,
as the validity of the modeled estimates is contingent on the validity of the ACS data
themselves. While several sources of bias were considered in the analysis, there could
potentially be other systematic biases in the data used to estimate the model. However,
given the extensive assessment and validation undertaken around the ACS, any remaining
biases [59] are likely to be small. One potential point of concern is the edits made to
the microdata before public release to prevent respondent identification. These statistical
disclosure controls affected the variables for age and year of entry. These variables were
top- and bottom-coded (respectively) for the analysis, removing rounded responses that
might have otherwise produced incorrect results. While existing disclosure controls are
unlikely to have biased the present analysis, changes in the approach used by the Census
Bureau to prevent respondent identification (‘differential privacy’ [60]) could have a major
impact on the feasibility and accuracy of the analyses undertaken in this study [61,62]. The
mortality rate inputs represent another potential source of bias. As these are not reported
for specific countries of origin, it is possible that mortality rates for a given country of origin
could have been higher or lower than the values assumed in the analysis. Similarly, there is
limited external information on how emigration rates differ by country of origin, and these
rates may not have been estimated precisely by the analytic model.

It is possible that biases may have been introduced by the approaches used to smooth
survey estimates. For example, while a flexible function was used to describe secular trends
in the age distribution of new immigrants, this function still assumed that this distribution
would be smooth. If the distribution changed discontinuously over time or age, this
sharp change would be captured imprecisely in the model. Similarly, the assumption that
emigration rates asymptote to a constant rate after 15 years since entry could also introduce
distortions if this assumption does not hold. These are two examples of simplifying
assumptions that were necessary to make the model feasible but that could introduce bias
to the modeled estimates if they conflict with survey data. Moreover, poor fit in one part of
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a model can have downstream effects for other parts of the model, introducing biases that
are difficult to diagnose and resolve. The various cross-validation checks demonstrated
good out-of-sample predictive performance on a range of test countries and scenarios,
reducing the likelihood that major biases exist, but it is still possible that biases could exist
for countries or years not included in the validation. One alternative specification in which
results differed meaningfully from the main analysis was the sensitivity analysis, which
excluded census-imputed values. This highlights the importance of the Census Bureau’s
approach for resolving missing or inconsistent entries. While this imputation may have
little impact for analyses that pool results across large population groups, they are shown
to be consequential for this particular application. In addition, the cross-validation results
were worse when predicting future immigration flows. This is consistent with the high
year-to-year variability estimated for immigration volume, where historical values provide
less information on what can be expected in future years.

In contrast to the population estimates, the estimates of immigration volume describe
a quantity that is not directly observed in the survey data but is instead computed indirectly
as the number of new immigrants needed to populate an observed immigration cohort. As a
consequence, these estimates depend more heavily on the validity of modeling assumptions.
The comparison data available to validate these estimates are also weaker and have their
own biases. If this estimation approach proves useful as a supplement to more direct
measures of foreign-born population dynamics, additional testing and validation of the
resulting estimates will be valuable.

5. Conclusions
Large population surveys like the American Community Survey and decennial census

have proven invaluable for understanding population dynamics and societal trends in
the United States. This study demonstrates how the evidence from these surveys can
be extended by combining raw data with a mechanistic model of population change.
Exploiting relationships within the survey data to allow more precise inferences is consistent
with the goals of the surveys themselves by providing the best information for decision-
making while minimizing cost and respondent burdens. Future research is needed to
understand the performance of this approach compared to those of other methods for
producing detailed population and migration estimates and to investigate the relationship
between the immigration trends described by these estimates and putative determinants of
immigration to better understand the causes of changes in migration to the United States.
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