
Citation: Saadan, R.; Hachimi Alaoui,

C.; Ihammi, A.; Chigr, M.; Fatimi, A.

A Brief Overview of Lignin Extraction

and Isolation Processes: From

Lignocellulosic Biomass to

Added-Value Biomaterials. Environ.

Earth Sci. Proc. 2024, 31, 3. https://

doi.org/10.3390/eesp2024031003

Academic Editor: Angela Lo Monaco

Published: 12 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

A Brief Overview of Lignin Extraction and Isolation Processes:
From Lignocellulosic Biomass to Added-Value Biomaterials †

Raja Saadan 1,2,‡, Chaymaa Hachimi Alaoui 2,3,‡, Aziz Ihammi 1, Mohamed Chigr 1,* and Ahmed Fatimi 2,*

1 Laboratory of Molecular Chemistry, Materials and Catalysis (LCMMC), Faculty of Science and
Technology (FSTBM), University Sultan Moulay Slimane (USMS), Mghila Campus, P.O. Box 523,
Beni Mellal 23000, Morocco; raja.saadan@usms.ma (R.S.); azizihammi@gmail.com (A.I.)

2 Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary
Faculty of Beni Mellal (FPBM), Sultan Moulay Slimane University (USMS), Mghila Campus, P.O. Box 592,
Beni Mellal 23000, Morocco; hachimialaoui.chaymaa.fpb21@usms.ac.ma

3 Regenerative Medicine and Skeleton (RmeS) Laboratory, UFR Odontologie, Nantes Université, INSERM
UMR1229, F-44000 Nantes, France

* Correspondence: chigrm@gmail.com (M.C.); a.fatimi@usms.ma (A.F.)
† Presented at the 4th International Electronic Conference on Forests, 23–25 September 2024; Available

online: https://sciforum.net/event/IECF2024.
‡ These authors contributed equally to this work.

Abstract: Lignin is one of the three major components of the cell wall of lignocellulosic biomaterials.
It is the second-most abundant polymer in nature. It is a complex and heterogeneous polymer found
in the cell walls of lignocellulosic biomass. Lignin’s predominant composition, which is rich in carbon
and aromatic structures, enhances its value by enabling the development of high-value chemicals and
bio-based materials. As one of the most affluent natural renewable sources of aromatic structures and
the world’s second-largest renewable source of carbon, lignin possesses a thermal value comparable
to that of carbon. Its aromatic constituents exhibit unique chemical properties and significant bioac-
tive effects, making lignin a crucial material in various advanced applications. Different chemical
fractionation methods have been designed to overcome the obstacles to extracting the lignin biopoly-
mer from lignocellulosic biomass. Lignin fractionation is a process that involves separating lignin
from other components of biomass feedstock, such as cellulose and hemicellulose. This process is
commonly used in the paper and pulp industry to obtain valuable lignin derivatives that can be used
in various applications, including, among others, biofuels, chemicals, and biomaterials. In the brief
overview described in this proceedings paper, we provide a comprehensive chemical overview of the
current processes for extracting technical lignin from wood and lignocellulosic biomass, critically
evaluating the advantages and limitations of each method.

Keywords: wood; lignin; chemistry; fractionation; extraction; chemical pulping

1. Introduction

Lignin is one of the three major components of the cell wall of lignocellulosic bio-
materials, accounting for 10–25% of their composition as a function of their origin and
environmental conditions. It is often chemically associated with cellulose and hemicellu-
lose within the cellular structures of plants. Additionally, it is the principal recalcitrant
component in these structures due to its complicated structure, which is made up of
propylphenolic subunits [1,2].

Typically, lignin biopolymer consists of three repeating units: p-hydroxyphenyl (H),
guaiacyl (G), and syringyl (S) [3–5]. These subunits contain various chemical groups that
are active sites for further chemical modifications and lignin utilization [6]. Furthermore,
the ratio of these subunits can vary depending on the plant source, leading to structural
diversity and tailored properties (Figure 1a). On the other hand, different types of linkages,
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mainly β-O-4 ether linkages, connect the building blocks of lignin and are crucial targets
for most degradation mechanisms (Figure 1b). Other bonds include β-5 phenylcoumaran,
β-β resinol, α-O-4 ether, 4-O-5 diphenyl ether, 5-5 biphenyl, and β-1 diphenyl methane
bonds, which make up smaller percentages [7].
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Figure 1. (a) Chemical structures of monolignols, which represent the precursors for the structural
units in the lignin backbone. (Adapted from Hachimi Alaoui et al. (2022) [2], Copyright© 2022 MDPI
under the terms of the Creative Commons Attribution 4.0 International License). (b) Example of
lignin’s structure, showing the main linkage bonds. (Reprinted from Figueiredo et al. (2018) [7], with
permission from Elsevier. Published under license, Copyright© 2018 Elsevier Ltd.).

Since lignin is made up of many carbon and aromatic structures, it is more valuable
because it can be used to make high-value chemicals and bio-based materials like hy-
drogels, films, nanofibers, and nanoparticles [8–12]. Furthermore, due to its intra- and
intermolecular hydrogen bonding, lignin exhibits antioxidative and antibacterial qualities,
UV-absorbing capacity, biocompatibility, and low cytotoxicity [8]. Its antioxidative activity
stems from phenolic structures containing hydroxyl groups that neutralize reactive oxy-
gen species (ROS) and free radicals [13]. The antibacterial properties arise from phenolic
compounds and functional groups (hydroxyl and methoxy) that can disrupt bacterial cell
membranes, making it useful in wound dressings and medical device coatings [14,15].
Finally, lignin’s UV-absorbing capacity, attributed to its aromatic structure, effectively
protects cells and tissues from UV-induced damage [16].

In the realm of materials science, lignin-derived carbon fibers are being utilized in
lightweight, high-strength composites for the aerospace and automotive industries [12,17].
Furthermore, its inherent bioactive properties have enabled the development of lignin-
based antioxidants and antimicrobial agents in food industries, biomedical fields, pharma-
ceuticals, and cosmetics [18–20]. In agriculture, lignin is employed in controlled-release
fertilizers and as a soil conditioner due to its biodegradable nature [11,21]. These examples
underscore the significance of lignin in advancing green technologies and its potential to
contribute to the circular economy [9]. To fully exploit the beneficial properties of this
biopolymer, several processes have been developed to optimize its isolation and recov-
ery from lignocellulosic biomass, including Kraft, sulfite, alkaline, and steam explosion
processes, among others [2,9,22].
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2. Added-Value Lignin-Based Materials

Taking advantage of lignin’s properties, including its antioxidative, antimicrobial, and
UV-protective capabilities, may open new perspectives in the development of promising
materials for various industrial applications, including those in the biomedical pharmaceu-
tical fields and in adsorbents, supercapacitor electrodes, and adhesives. For instance, Kraft
lignin was added to solid phenol and an aqueous solution of formaldehyde to prepare
porous hydrogels [23]. In 2018, Sathawong et al. (2018) recovered Kraft lignin to synthesize
a lignin–agarose hydrogel for cartilage neural tissue engineering and wound healing appli-
cations [24]. As well, sodium-lignosulfonate was grafted to poly(acrylic acid)co(poly(vinyl
pyrrolidone) to form hydrogels for drug delivery applications [25]. Another way to use
lignin biopolymer for biomedical applications is in scaffold preparation using the 3D bio-
printing technique. In 2020, Jiang et al. (2020) successfully developed scaffolds using
alkali lignin with Pluronic F127 [26]. In the same context, in 2022, Akhramez et al. (2022)
developed and studied a novel lignin-based hydrogel for future applications in biomedical
engineering using modified bagasse-sourced lignin obtained by the alkaline delignification
process [9]. In the field of adsorbents, lignin-based materials have shown good promise in
removing heavy metals, dyes, and other pollutants from water, highlighting their useful-
ness in environmental remediation. Last year, Sun et al. (2023) developed a cost-effective
and environmentally friendly lignin-based network composite hydrogel adsorbent for
methylene blue (MB) adsorption from wastewater by cross-linking polyacrylic acid (PAA)
with sulfomethylated lignin (SML) derived from alkaline lignin [27]. In the same context,
Li et al. (2016) investigated the potential of lignin in the development of high-performance
of magnetic lignin hollow microspheres (MLS) with high adsorption capacity for organic
dyes such as methylene blue and rhodamine B by synthesizing lignin hollow microspheres
(LHM) from esterified organosolv lignin [28]. Beyond these applications, lignin has inherent
adhesive properties that allow the formation of strong and durable bonds. More recently,
Luo et al. (2024) developed super-tough and high-temperature-resistant hot-melt adhesives
using lignin-derived elastomers [29].

3. Processing Methods for Lignin Extraction

In the literature, lignin extraction methods are broadly categorized into two main
approaches: (1) methods where lignin is obtained as a residue and (2) methods where
lignin is actively extracted. In the former approach, lignin is typically a byproduct of
industrial processes, such as the Kraft and sulfite pulping processes, which primarily
focus on cellulose and hemicellulose recovery. The resulting lignin often contains chemical
impurities and modified structures due to the harsh treatment conditions. In contrast,
the latter approach involves the targeted extraction of lignin using specific techniques,
such as organosolv or alkaline processes, which are designed to isolate lignin with higher
purity and more preserved structural properties [30]. As Holladay et al. (2007) pointed
out in their comprehensive screening study, this classification highlights the variability in
lignin quality and the suitability of different extraction methods for specific downstream
applications [30].

Lignin can be extracted in various forms by different extraction processes [31]. Prior to
extraction, lignocellulosic biomass can undergo preliminary treatments classified as chem-
ical, physicochemical, or enzymatic pretreatments to remove the hemicellulose fraction,
thereby facilitating lignin isolation [32]. It is worth noting that various physicochemical
parameters and environmental conditions (i.e., temperature, solvent concentration, reac-
tion time, and type of raw material) significantly impact the extraction yield and lignin
properties [33,34]. Lignin can be obtained using Kraft, sulfite, alkaline, organosolv, steam
explosion, or hydrolysis processes [35,36], as well as through “green methods” employing
“eco-friendly solvents” such as ionic liquids and deep eutectic solvents [37,38]. After ex-
traction, different techniques can be used to purify the obtained lignins, with the aim of
isolating specific molecular lignin fractions with well-defined properties [39]. To enhance
the comprehensibility of the differences between lignin types, Figure 2 illustrates the chem-
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ical structures of lignosulfonate lignin, Kraft lignin, organosolv lignin, and soda lignin.
These structures highlight the impact of different extraction and purification processes on
lignin’s composition and functional groups [40].
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tions. (Created with ACD/ChemSketch (Freeware) 2023.1.2. Adapted from Melro et al. (2018) [40], with
permission from Elsevier. Published under license, Copyright© 2018 Elsevier Ltd.).

For more details about these different methods as a function of the classifications, the
following sub-sections summarize the important lignin extraction processes.

3.1. Kraft Process

The Kraft process is a widely applied method for lignin extraction that is particularly
suitable for wood-based materials. This process employs a solution of sodium hydroxide
and sodium sulfide, commonly known as white liquor, to dissolve lignin at an elevated
temperature of approximately 170 ◦C and a high pH level, typically between 13 and 14.
The reaction typically spans around two hours, after which lignin can be isolated from the
residual pulp through precipitation, often mediated by sulfuric acid [7,41,42].

One of the main advantages of the Kraft process is its high lignin removal efficiency,
which effectively liberates lignin from the wood matrix while yielding a lignin product
with a relatively low ash content. Additionally, Kraft lignin is valuable due to its solubility
in alkali solutions and various polar organic solvents, offering flexibility in downstream
applications. However, the Kraft process has some limitations, notably its lengthy reaction
time and the generation of black liquor—a byproduct rich in carbohydrates. This byproduct
requires further processing, adding complexity and cost to the overall process.

To address these challenges, advanced techniques such as the LignoBoost process have
been developed. The LignoBoost process builds on the traditional acidification method by
introducing a two-step precipitation procedure. In the first step, carbon dioxide is used
to partially precipitate the lignin, followed by sulfuric acid for further purification. This
dual-step approach reduces impurities, improves the filtration performance, and lowers
the resistance of the filter cake, making the process more efficient. Moreover, LignoBoost
lignin exhibits higher purity and uniformity, which enhances its potential for high-value
applications such as adhesives, resins, and carbon fibers [43].

3.2. Sulfite Process

The sulfite process is another key method for extracting lignin, which specifically
produces lignosulfonates through a chemical reaction involving lignin, sulfur dioxide (SO2),
and a metal sulfite such as calcium sulfite (CaSO3) or magnesium sulfite (MgSO3). This
reaction targets and cleaves α-ether and β-ether linkages in the lignin structure, facilitating
lignin’s release from the wood matrix. The process is typically conducted at temperatures
ranging from 120 to 180 ◦C over a span of 1 to 5 h, and it can be adapted to operate under
alkaline, neutral, or acidic conditions depending on the desired outcomes [7,41,44].
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One of the primary benefits of the sulfite process is the production of lignosulfonate,
a highly soluble form of lignin. This lignosulfonate demonstrates solubility in water,
polar organic solvents, and amines, expanding its applicability across various industries.
However, there are significant downsides to this process. It yields a lignin product with a
high sulfur content, which may limit its use in some applications. Additionally, the sulfite
process is less selective, often resulting in the co-extraction of both lignin and hemicellulose.
This lack of selectivity, coupled with the high content of ash and carbohydrates in the
end product, can complicate lignin purification. Moreover, the process alters the lignin’s
original structure, potentially impacting its functional properties in further applications.

3.3. Alkaline Process

The alkaline process is a commonly used approach for lignin extraction, and it is
particularly effective for the delignification of non-wood lignocellulosic materials. This
process employs various alkali solutions, including ammonium, sodium, and calcium
hydroxide, to hydrolytically break down lignin within the biomass. Typically carried out
at temperatures ranging from 140 to 170 ◦C, the process allows for the efficient separation of
lignin, which can then be recovered through centrifugation or filtration techniques [7,41,45,46].

Among the advantages of the alkaline process is its high lignin removal efficiency,
producing a product with low ash content and with minimal formation of inhibitory com-
pounds, which can be beneficial for subsequent applications. However, some downsides
are associated with this approach. The use of alkaline catalysts can incur high costs, and
the process often results in significant structural alterations to the lignin, which may affect
its functionality. Additionally, the lignin obtained may contain a substantial amount of
residual carbohydrates, necessitating further purification steps.

3.4. Organosolv Process

The organosolv process is an advanced lignin extraction method that involves treating
lignocellulosic biomass with organic solvents—such as ethanol, methanol, acetic acid,
formic acid, ethylene glycol, or tetrahydrofurfuryl alcohol—that are often mixed with
water. The process may also incorporate basic or acidic catalysts to enhance the extraction
efficiency. Conducted at temperatures between 170 and 190 ◦C, this approach allows lignin
to dissolve within the organic solvent medium, from which it can later be recovered by
solvent evaporation or precipitation [7,41,44,45,47,48].

This method offers several advantages: it produces a lignin product with no sulfur
content, making it more suitable for certain applications where sulfur-free lignin is pre-
ferred. Additionally, the organosolv process is less aggressive than other methods, resulting
in lignin with low ash content and lower molecular weight, which can increase its solubility
in alkali solutions and broaden its applicability. Furthermore, the relatively short reaction
times make this process efficient. Despite its benefits, the organosolv process has some
limitations. The primary challenge lies in the high cost of the organic solvents, which can
significantly increase the overall expense. Additionally, solvent recovery is required to
maintain cost-effectiveness and environmental compliance, necessitating an extra process-
ing step. The lignin produced by this method is also notably hydrophobic, which may limit
its compatibility with certain applications unless further modification is performed.

3.5. Steam Explosion Process

The steam explosion process is an innovative and cost-effective lignin extraction method
that utilizes both mechanical and chemical forces to break down lignocellulosic materials.
In this process, lignocellulosic biomass is subjected to high temperatures (180–250 ◦C) for
a brief period (about 1–2 min) to reach pressures of 4–7 MPa. This rapid treatment causes
the acetyl groups within hemicellulose to undergo autohydrolysis, leading to a “steam
explosion” effect that aids in the disruption of the biomass structure. Following this, lignin
can be separated from hemicellulose-derived products via a washing step using an alkali
solution or organic solvent [41,44–46,49,50].
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Steam explosion offers several advantages: it is sulfur-free, which improves the
environmental profile and reduces processing costs compared with sulfur-based methods.
The process is also energy efficient and produces a lignin product with low ash content
while having minimal environmental impact. However, the intense conditions of steam
explosion can lead to significant structural modifications to the lignin, which may impact
its usability in certain applications. Additionally, the method often results in a high
hemicellulose content within the extracted lignin and may generate toxic byproducts,
necessitating careful handling and additional processing.

3.6. Hydrolysis Process

The hydrolysis process is a lignin extraction technique that utilizes acidic or enzy-
matic hydrolysis to break down lignocellulosic biomass. This approach primarily targets
and dissolves the carbohydrate fraction of the biomass, after which the lignin can be
isolated through precipitation. Hydrolysis can be performed using strong acids, which
facilitate rapid carbohydrate dissolution, or through enzymes, which offer a more selective
breakdown while being gentler on the lignin structure [6,41,46,49,51].

The hydrolysis process offers several distinct benefits. It produces sulfur-free lignin,
enhancing its applicability in industries where sulfur content is undesirable. Additionally,
this method yields a high glucose content from the dissolved carbohydrates, which can be
valuable in biofuel and biochemical production. It is also a relatively low-energy process
compared with other lignin extraction methods, making it more sustainable from an energy
consumption perspective. However, the hydrolysis process is not without limitations. It
requires an extended treatment duration, particularly for enzymatic hydrolysis, which
may affect the process efficiency. This method can also lead to carbohydrate depletion if
microbial cultures are present, complicating the product purity. Furthermore, the formation
of inhibitory byproducts is a challenge, as these can affect downstream processes. Lastly,
the acidic hydrolysis option necessitates the use of corrosion-resistant equipment, which
can substantially increase operational costs.

3.7. Ionic-Liquid Extraction Process

The ionic-liquid extraction process represents a green and efficient method for lignin
extraction that leverages ionic liquids—salts composed of inorganic anions and organic
cations with unique solvent properties. These ionic liquids act as effective solvents for
lignocellulosic biomass, facilitating the dissolution of both lignin and carbohydrates. This
approach has the added benefit of reducing the structural rigidity of lignin, making it easier
to process and utilize [41,48–50,52,53].

This method offers several advantages. Ionic liquids generally have low melting
points (below 100 ◦C), and they exhibit high thermal stability and polarity, which enhance
their effectiveness in lignin dissolution. Furthermore, ionic liquids have low toxicity and
cause minimal structural alterations to lignin, preserving its native properties. They are
also reusable, making them environmentally and economically favorable for sustainable
biomass processing. However, the high cost of ionic liquids poses a significant barrier to the
widespread application of this method. Additionally, the process requires an antisolvent to
regenerate the biomass, adding complexity. An extra step for ionic-liquid recovery is also
necessary, as these solvents must be recycled to offset costs. This recycling process, while
feasible, is energy-intensive, which may diminish some of the environmental benefits of
using ionic liquids.

3.8. Deep Eutectic Solvent Process

The deep eutectic solvent (DES) process is a novel green method for lignin extraction
that employs a unique class of solvents. DESs consist of a hydrogen-bond donor (HBD) and
a hydrogen-bond acceptor (HBA), which, together, form a stable, eutectic mixture capable
of efficiently dissolving lignin and other biomass components. Typically, choline chloride
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is used as the HBA, while common HBDs include amines, carboxylic acids, and alcohols,
resulting in a highly customizable solvent system [6,46,49,54–56].

DESs offer numerous advantages, making them well suited for sustainable lignin
extraction. They are inexpensive, straightforward to prepare, and exhibit high biocom-
patibility and biodegradability. Additionally, DESs are non-flammable, low-volatile, and
environmentally friendly, enhancing their appeal as green solvents. This method allows
for the dissolution of various biomass types and produces high-purity lignin under relatively
mild conditions, preserving lignin’s functional integrity while reducing energy consumption.
However, like other solvent-based processes, DES extraction requires solvent recovery and
recycling to be cost-effective and sustainable, which adds an additional step to the process.

4. Conclusions

The various extraction techniques presented in this brief overview highlight signif-
icant progress in isolating lignin from lignocellulosic biomass. Each method, whether
sulfur-based, sulfur-free, or involve novel green technologies, has distinct advantages and
limitations that directly influence the structure, purity, and properties of the extracted
lignin. Selecting appropriate extraction conditions and parameters is crucial for retaining
the intrinsic functional properties of lignin, which is essential for its diverse applications.
Green technologies, such as those employing deep eutectic solvents, ionic liquids, and
organosolv processes, are particularly noteworthy for their potential to minimize environ-
mental impacts. These methods allow for the recovery and reuse of solvents, reducing
waste generation and lowering the carbon footprint of lignin extraction. Additionally,
they contribute to the development of environmentally sustainable biorefinery processes
by replacing conventional harsh chemical treatments with eco-friendly alternatives. The
adoption of these methods not only aligns with global efforts to address environmental
pressures but also enhances the feasibility of lignin-based materials as a renewable and sus-
tainable resource. The continued advancement of lignin extraction technologies, coupled
with a deeper understanding of structure–property relationships, will play a vital role in
unlocking the full potential of this versatile biopolymer. This progress will facilitate the
development of sustainable biomaterials, contribute to reducing environmental burdens,
and support the transition toward a circular bioeconomy.
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