10th Anniversary of Antibiotics - Recent Advances in Novel Antimicrobial Agents

A special issue of Antibiotics (ISSN 2079-6382). This special issue belongs to the section "Novel Antimicrobial Agents".

Deadline for manuscript submissions: closed (31 December 2021) | Viewed by 13307

Special Issue Editor


E-Mail Website
Guest Editor
Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Science, University of Santiago de Compostela, 27002 Lugo, Spain
Interests: food safety; analytical chemistry; food microbiology; antimicrobial resistant bacteria; food-borne pathogens; transcriptomics; genotyping; chromatography; mass spectrometry; biofilms; antimicrobial detection; microbiome
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The Antibiotics journal was founded in 2012. Over the past ten years, Antibiotics has launched more than 100 Special Issues and published more than 1500 papers. The journal covers all aspects of antibiotic discovery, use and preservation. The year 2021 marks the 10th anniversary of Antibiotics. We are thus excited to celebrate Antibiotics’ 10th anniversary with a Special Issue.

This Special Issue welcomes both research and review papers in the most recent and innovative developments of antimicrobial agents. We hope the Special Issue can further encourage and promote the scientific contributions of the researchers in this field. If your paper is well prepared and approved for publication, you may be eligible for discounts on your publication.

Prof. Carlos M. Franco
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibiotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 1704 KiB  
Article
The Effect of Tannin-Rich Witch Hazel on Growth of Probiotic Lactobacillus plantarum
by Reuven Rasooly, Alex C. Howard, Naomi Balaban, Bradley Hernlem and Emmanouil Apostolidis
Antibiotics 2022, 11(3), 395; https://doi.org/10.3390/antibiotics11030395 - 16 Mar 2022
Cited by 1 | Viewed by 3196
Abstract
Probiotic bacteria help maintain microbiome homeostasis and promote gut health. Maintaining the competitive advantage of the probiotics over pathogenic bacteria is a challenge, as they are part of the gut microbiome that is continuously exposed to digestive and nutritional changes and various stressors. [...] Read more.
Probiotic bacteria help maintain microbiome homeostasis and promote gut health. Maintaining the competitive advantage of the probiotics over pathogenic bacteria is a challenge, as they are part of the gut microbiome that is continuously exposed to digestive and nutritional changes and various stressors. Witch hazel that is rich in hamamelitannin (WH, whISOBAXTM) is an inhibitor of growth and virulence of pathogenic bacteria. To test for its effect on probiotic bacteria, WH was tested on the growth and biofilm formation of a commercially available probiotic Lactobacillus plantarum PS128. As these bacteria are aerotolerant, the experiments were carried out aerobically and in nutritionally inadequate/poor (nutrient broth) or adequate/rich (MRS broth) conditions. Interestingly, despite its negative effect on the growth and biofilm formation of pathogenic bacteria such as Staphylococcus epidermidis, WH promotes the growth of the probiotic bacteria in a nutritionally inadequate environment while maintaining their growth under a nutritionally rich environment. In the absence of WH, no significant biofilm is formed on the surfaces tested (polystyrene and alginate), but in the presence of WH, biofilm formation was significantly enhanced. These results indicate that WH may thus be used to enhance the growth and survival of probiotics. Full article
Show Figures

Figure 1

11 pages, 433 KiB  
Article
In Vitro Activities of Ceftazidime–Avibactam and Aztreonam–Avibactam at Different Inoculum Sizes of Extended-Spectrum β-Lactam-Resistant Enterobacterales Blood Isolates
by Moonsuk Bae, Taeeun Kim, Joung Ha Park, Seongman Bae, Heungsup Sung, Mi-Na Kim, Jiwon Jung, Min Jae Kim, Sung-Han Kim, Sang-Oh Lee, Sang-Ho Choi, Yang Soo Kim and Yong Pil Chong
Antibiotics 2021, 10(12), 1492; https://doi.org/10.3390/antibiotics10121492 - 5 Dec 2021
Cited by 2 | Viewed by 2594
Abstract
β-lactam–avibactam combinations have been proposed as carbapenem-sparing therapies, but little data exist on their in vitro activities in infections with high bacterial inocula. We investigated the in vitro efficacies and the inoculum effects of ceftazidime–avibactam and aztreonam–avibactam against extended-spectrum β-lactam-resistant Enterobacterales blood isolates. [...] Read more.
β-lactam–avibactam combinations have been proposed as carbapenem-sparing therapies, but little data exist on their in vitro activities in infections with high bacterial inocula. We investigated the in vitro efficacies and the inoculum effects of ceftazidime–avibactam and aztreonam–avibactam against extended-spectrum β-lactam-resistant Enterobacterales blood isolates. A total of 228 non-repetitive extended-spectrum β-lactam-resistant Escherichia coli and Klebsiella pneumoniae blood isolates were prospectively collected in a tertiary center. In vitro susceptibilities to ceftazidime, aztreonam, meropenem, ceftazidime–avibactam, and aztreonam–avibactam were evaluated by broth microdilution method using standard and high inocula. An inoculum effect was defined as an eightfold or greater increase in MIC when tested with the high inoculum. Of the 228 isolates, 99% were susceptible to ceftazidime–avibactam and 99% had low aztreonam–avibactam MICs (≤8 mg/L). Ceftazidime–avibactam and aztreonam–avibactam exhibited good in vitro activities; MIC50/MIC90 values were 0.5/2 mg/L, 0.125/0.5 mg/L, and ≤0.03/0.25 mg/L, respectively, and aztreonam–avibactam was more active than ceftazidime–avibactam. The frequencies of the inoculum effect with ceftazidime–avibactam and aztreonam–avibactam were lower than with meropenem (14% vs. 38%, p < 0.001 and 30% vs. 38%, p = 0.03, respectively). The β-lactam-avibactam combinations could be useful as carbapenem-sparing strategies, and aztreonam–avibactam has the better in vitro activity but is more subject to the inoculum effect than ceftazidime–avibactam. Full article
Show Figures

Figure 1

Review

Jump to: Research

12 pages, 960 KiB  
Review
Delafloxacin, Finafloxacin, and Zabofloxacin: Novel Fluoroquinolones in the Antibiotic Pipeline
by Béla Kocsis, Dániel Gulyás and Dóra Szabó
Antibiotics 2021, 10(12), 1506; https://doi.org/10.3390/antibiotics10121506 - 8 Dec 2021
Cited by 25 | Viewed by 6519
Abstract
Novel antimicrobial agents, approved for clinical use in past years, represent potential treatment options for various infections. In this review, we summarize the most important medical and microbiological features of three recently approved fluoroquinolones, namely delafloxacin, finafloxacin, and zabofloxacin. Delafloxacin possesses an anionic [...] Read more.
Novel antimicrobial agents, approved for clinical use in past years, represent potential treatment options for various infections. In this review, we summarize the most important medical and microbiological features of three recently approved fluoroquinolones, namely delafloxacin, finafloxacin, and zabofloxacin. Delafloxacin possesses an anionic chemical structure, and represents broad-spectrum activity, as it targets both bacterial DNA gyrase and topoisomerase IV enzymes of gram-positive and gram-negative bacteria with equal affinity. Its molecular surface is larger than that of other fluoroquinolones, and it has enhanced antibacterial efficacy in acidic environments. Delafloxacin has been approved to treat acute bacterial skin and skin-structure infections, as well as community-acquired bacterial pneumonia. Finafloxacin has a zwitterionic chemical structure, and targets both DNA gyrase and topoisomerase IV enzymes. This enables a broad antibacterial spectrum; however, finafloxacin has so far only been approved in ear-drops to treat bacterial otitis externa. Zabofloxacin is also a broad-spectrum fluoroquinolone agent, and was first approved in South Korea to treat acute bacterial exacerbation of chronic obstructive pulmonary disease. The introduction of these novel fluoroquinolones into daily practice extends the possible indications of antibiotics into different bacterial infections, and provides treatment options in difficult-to-treat infections. However, some reports of delafloxacin resistance have already appeared, thus underlining the importance of the prudent use of antibiotics. Full article
Show Figures

Figure 1

Back to TopTop