applsci-logo

Journal Browser

Journal Browser

Advanced Analysis, Early-Warning and Control Method for Rock Engineering

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Earth Sciences".

Deadline for manuscript submissions: closed (30 November 2023) | Viewed by 3114

Special Issue Editors

College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
Interests: rock-support interaction; rock deformation prediction; rock mechanics; rock bolt behavior; large deformation

E-Mail Website
Guest Editor
School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083 China
Interests: rock mechanics; jointed rock mass; 3D printing; discontinuities mapping; rock failure
Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
Interests: triaxial hopkinson bar techniques; high-speed three-dimensional digital image correlation (3D-DIC); confinement and rate dependent behaviours of solid materials; dynamic fracturing behaviours of geomaterials under multi-axial loadings; micro-structural characterization and failure micro-mechanisms

Special Issue Information

Dear Colleagues,

Most rock engineering disasters (such as rock burst, water inrush, coal and gas outburst, large deformation, landslide, etc.) induced by external disturbance in mining engineering, transportation engineering, and civil engineering are closely related to rock instability and failure, which motivates people to understand rock behaviors and fundamental disaster-related mechanisms, and to develop a variety of methods for the analysis, early-warning detection, and prevention of potential disasters.

In recent years, more sophisticated and practical advancements for rock engineering have been achieved to reproduce the disaster-related failure process, which provides new tools and technologies for developing early-warning, safe, feasible, and economical prevention strategies. This Special Issue welcomes research papers aiming to rock engineering and to share knowledge and advances related to this topic. Original research and review articles on theoretical analysis, numerical simulation, laboratory testing, and case studies are encouraged.

Dr. Kai Guan
Dr. Peitao Wang
Dr. Kai Liu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • geological and mechanical characterization of rock mass
  • experimental, theoretical, and numerical simulation methods of rock mechanics
  • engineering rock mass testing and on-site monitoring
  • prediction, early-warning detection, and prevention of rock disaster non-linear continuum mechanics
  • artificial intelligence

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 8374 KiB  
Article
Research on the Influence of Tunnel Invert Excavation on the Rheological Deformation of Different Levels of Surrounding Rock
by Helin Fu, Wu Xu and Yimin Wu
Appl. Sci. 2023, 13(12), 6960; https://doi.org/10.3390/app13126960 - 8 Jun 2023
Cited by 1 | Viewed by 1502
Abstract
The closed section of the inverted arch, formed by the surrounding rock, acts as a bearing ring. Combined with the upper initial support, it ensures stable initial support. However, excavating the inverted arch can disturb the original balance, significantly affecting the tunnel’s stability. [...] Read more.
The closed section of the inverted arch, formed by the surrounding rock, acts as a bearing ring. Combined with the upper initial support, it ensures stable initial support. However, excavating the inverted arch can disturb the original balance, significantly affecting the tunnel’s stability. To determine the optimal exposure length and excavation length of the elevation arches at different rock levels, numerical analyses were conducted. These analyses used the classical Burgers creep intrinsic structure model for the three-step excavation mode. Various closure distances and exposure distances of the elevation arch were considered. The study aimed to investigate the influence of these factors on the stability of the primary lining, comparing it with the maximum displacement of the vault. The results indicate that the strength of the surrounding rock primarily affects the displacement of the arch crown. Lower rock strength corresponds to greater arch crown displacement. Additionally, increasing the closure distance of the inverted arch leads to increased arch displacement. On the other hand, the exposure distance of the inverted arch has minimal impact on arch displacement. Longer exposure distances result in greater arch displacement. These findings can serve as a basis for improving current standards and adapting them to meet the spatial requirements of large-scale mechanized operations. Full article
Show Figures

Figure 1

22 pages, 7882 KiB  
Article
“Migrate-Transfer-Control” Support System of Surrounding Rock in the Deep Roadway and Its Application
by Tao Qin, Binyang Duan, Yanwei Duan, Yaozu Ni, Xiangang Hou, Pingyun Ma and Yue Yang
Appl. Sci. 2023, 13(10), 6325; https://doi.org/10.3390/app13106325 - 22 May 2023
Cited by 4 | Viewed by 1013
Abstract
After coal mining enters the deep, the mining environment changes dramatically, and engineering disasters become increasingly prominent, which are mostly related to rock instability and failure. As traditional support is difficult to meet production needs, it is necessary to improve the support system. [...] Read more.
After coal mining enters the deep, the mining environment changes dramatically, and engineering disasters become increasingly prominent, which are mostly related to rock instability and failure. As traditional support is difficult to meet production needs, it is necessary to improve the support system. Based on the engineering background of the Pinggang mining roadway, this work studies the migration law of overlying strata in deep goaf by theoretical analysis and numerical simulation. The results show that the vertical stress and plastic failure range of the surrounding rock in front of the working face increase with the advance distance and when the working face advances to the first square, reaching the maximum. A stope spatial model considering the influence of horizontal stress is established. Combined with the theory of key strata, the stress transfer characteristics of overlying strata are analyzed. It can be seen that 0~30 m in front of the coal wall of the working face is the influence range of advanced abutment pressure, and the dynamic mining pressure in this range has a great influence. The inclined direction of the working face, 0~20 m away from the coal wall of the roadway, is the influence range of the solid coal abutment pressure. On this basis, the “migration- transfer- control” technical system of surrounding rock in deep stope face is put forward, i.e., the stress transfer of surrounding rock is caused by overlying rock migration, and the large deformation of surrounding rock is controlled by supporting means. Based on the original support scheme of the roadway, three reinforcement schemes are designed for the roof, the sidewalls, and both the roof and sides. The deformation control effect of the reinforcement scheme is far greater than that of the single factor, and the field monitoring effect is good. The research results aim to provide theoretical and technical support for the deformation control of mining roadways in the deep mining process. Full article
Show Figures

Figure 1

Back to TopTop