SARS-CoV-2 and Immunology

A special issue of Biology (ISSN 2079-7737). This special issue belongs to the section "Immunology".

Deadline for manuscript submissions: closed (29 February 2024) | Viewed by 15945

Special Issue Editors


E-Mail Website
Guest Editor
Laboratory for Transplantation Immunology, University Hospital Leipzig, Johannisallee 32, 04103 Leipzig, Germany
Interests: COVID-19 (SARS-CoV-2) immunogenetics; T and B cell involvement in SARS-CoV-2 immunology; solid organ transplantation; stem cell transplantation; classical immunogenetics

E-Mail Website
Guest Editor
Laboratory for Transplantation Immunology, University Hospital Leipzig, Johannisallee 32, 04103 Leipzig, Germany
Interests: kidney transplantation; epitope compatibility in transplantation; COVID-19 immunology

Special Issue Information

Dear Colleagues,

The SARS-CoV-2 pandemic seems to be in decline. Some leading personalities even mention that worldwide, an endemic situation has occurred. However, a lot of data have been accumulated in different laboratories in different countries. These data are somewhat published, but many are still in that process. The aim of this Special Issue is to orchestrate the different findings in a feasible issue concentrating on the immunological features of infection, its avoidance through people’s immunogentic backgrounds, and the role of immune cells, e.g., T, B, and NK. Furthermore, data on SARS-CoV-2 infections in autoimmune-diseased individuals are also welcome.  Finally, lessons to learn from the generated data and how different populations are involved in it are also part of this issue.

We are pleased to invite you to submit an original manuscript/mini-review on the SARS-CoV-2 infection. This might include data on immunology including the role of immune cells (T, B, NK, dendritic cells, etc.) or classical immunogenetics such as HLA or other groups such as KIR, blood groups, cytokines, inhibitory receptors (LIR), etc. Finally, population data from different regions of the planet are welcome.

In case you are interested in contributing to this issue, please feel free to contact us prior to submitting a full manuscript.

We look forward to receiving your contributions.  

Dr. Claudia Lehmann
Prof. Dr. Ilias Doxiadis
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • SARS-CoV-2
  • vaccination SARS-CoV-2
  • HLA
  • NK
  • T-cell
  • epitop
  • immun response

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 2745 KiB  
Article
Genomic Diversity and Recombination Analysis of the Spike Protein Gene from Selected Human Coronaviruses
by Sayed Sartaj Sohrab, Fatima Alsaqaf, Ahmed Mohamed Hassan, Ahmed Majdi Tolah, Leena Hussein Bajrai and Esam Ibraheem Azhar
Biology 2024, 13(4), 282; https://doi.org/10.3390/biology13040282 - 22 Apr 2024
Viewed by 1893
Abstract
Human coronaviruses (HCoVs) are seriously associated with respiratory diseases in humans and animals. The first human pathogenic SARS-CoV emerged in 2002–2003. The second was MERS-CoV, reported from Jeddah, the Kingdom of Saudi Arabia, in 2012, and the third one was SARS-CoV-2, identified from [...] Read more.
Human coronaviruses (HCoVs) are seriously associated with respiratory diseases in humans and animals. The first human pathogenic SARS-CoV emerged in 2002–2003. The second was MERS-CoV, reported from Jeddah, the Kingdom of Saudi Arabia, in 2012, and the third one was SARS-CoV-2, identified from Wuhan City, China, in late December 2019. The HCoV-Spike (S) gene has the highest mutation/insertion/deletion rate and has been the most utilized target for vaccine/antiviral development. In this manuscript, we discuss the genetic diversity, phylogenetic relationships, and recombination patterns of selected HCoVs with emphasis on the S protein gene of MERS-CoV and SARS-CoV-2 to elucidate the possible emergence of new variants/strains of coronavirus in the near future. The findings showed that MERS-CoV and SARS-CoV-2 have significant sequence identity with the selected HCoVs. The phylogenetic tree analysis formed a separate cluster for each HCoV. The recombination pattern analysis showed that the HCoV-NL63-Japan was a probable recombinant. The HCoV-NL63-USA was identified as a major parent while the HCoV-NL63-Netherland was identified as a minor parent. The recombination breakpoints start in the viral genome at the 142 nucleotide position and end at the 1082 nucleotide position with a 99% CI and Bonferroni-corrected p-value of 0.05. The findings of this study provide insightful information about HCoV-S gene diversity, recombination, and evolutionary patterns. Based on these data, it can be concluded that the possible emergence of new strains/variants of HCoV is imminent. Full article
(This article belongs to the Special Issue SARS-CoV-2 and Immunology)
Show Figures

Figure 1

21 pages, 3338 KiB  
Article
Influence of Mutations and N-Glycosylation Sites in the Receptor-Binding Domain (RBD) and the Membrane Protein of SARS-CoV-2 Variants of Concern on Antibody Binding in ELISA
by Mandy Schwarze, Daniela Volke, Juan Camilo Rojas Echeverri, Robin Schick, Nicole Lakowa, Thomas Grünewald, Johannes Wolf, Stephan Borte, Markus Scholz, Andor Krizsan and Ralf Hoffmann
Biology 2024, 13(4), 207; https://doi.org/10.3390/biology13040207 - 23 Mar 2024
Viewed by 2349
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect human cells by first attaching to the ACE-2 receptor via its receptor-binding domain (RBD) in the spike protein. Here, we report the influence of N-glycosylation sites of the RBD and the membrane (M) protein [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect human cells by first attaching to the ACE-2 receptor via its receptor-binding domain (RBD) in the spike protein. Here, we report the influence of N-glycosylation sites of the RBD and the membrane (M) protein on IgG antibody binding in serum samples from patients infected with the original SARS-CoV-2 strain in Germany. The RBDs of the wildtype, alpha, beta, gamma, and kappa variants expressed in HEK293S GnTI− cells were all N-glycosylated at Asn331, Asn334, Asn343, and Asn360 or Asn370, whereas the M-protein was glycosylated at Asn5. An ELISA using a coated RBD and probed with anti-RBD IgG antibodies gave a sensitivity of 96.3% and a specificity of 100% for the wildtype RBD, while the sensitivity decreased by 5% to 10% for the variants of concern, essentially in the order of appearance. Deglycosylation of the wildtype RBD strongly reduced antibody recognition by ~20%, considering the mean of the absorbances recorded for the ELISA. This effect was even stronger for the unglycosylated RBD expressed in Escherichia coli, suggesting structural changes affecting epitope recognition. Interestingly, the N-glycosylated M-protein expressed in HEK293S GnTI− cells gave good sensitivity (95%), which also decreased to 65% after deglycosylation, and selectivity (100%). In conclusion, N-glycosylation of the M-protein, the RBD, and most likely the spike protein are important for proper antibody binding and immunological assays, whereas the type of N-glycosylation is less relevant. Full article
(This article belongs to the Special Issue SARS-CoV-2 and Immunology)
Show Figures

Figure 1

15 pages, 1349 KiB  
Article
Genetic Predisposition to SARS-CoV-2 Infection: Cytokine Polymorphism and Disease Transmission within Households
by Marius Saal, Henry Loeffler-Wirth, Thomas Gruenewald, Ilias Doxiadis and Claudia Lehmann
Biology 2023, 12(11), 1385; https://doi.org/10.3390/biology12111385 - 30 Oct 2023
Cited by 2 | Viewed by 1690
Abstract
We addressed the question of the influence of the molecular polymorphism of cytokines from different T helper subsets on the susceptibility to SARS-CoV-2 infection. From a cohort of 527 samples (collected from 26 May 2020 to 31 March 2022), we focused on individuals [...] Read more.
We addressed the question of the influence of the molecular polymorphism of cytokines from different T helper subsets on the susceptibility to SARS-CoV-2 infection. From a cohort of 527 samples (collected from 26 May 2020 to 31 March 2022), we focused on individuals living in the same household (n = 58) with the SARS-CoV-2-infected person. We divided them into households with all individuals SARS-CoV-2 PCR positive (n = 29, households, 61 individuals), households with mixed PCR pattern (n = 24, 62) and negative households (n = 5, 15), respectively. TGF-β1 and IL-6 were the only cytokines tested with a significant difference between the cohorts. We observed a shift toward Th2 and the regulatory Th17 and Treg subset regulation for households with all members infected compared to those without infection. These data indicate that the genetically determined balance between the cytokines acting on different T helper cell subsets may play a pivotal role in transmission of and susceptibility to SARS-CoV-2 infection. Contacts infected by their index persons were more likely to highly express TGF-β1, indicating a reduced inflammatory response. Those not infected after contact had a polymorphism leading to a higher IL-6 expression. IL-6 acts in innate immunity, allergy and on the T helper cell differentiation, explaining the reduced susceptibility to SARS-CoV-2. Full article
(This article belongs to the Special Issue SARS-CoV-2 and Immunology)
Show Figures

Figure 1

17 pages, 4335 KiB  
Article
Individual Immune Response to SARS-CoV-2 Infection—The Role of Seasonal Coronaviruses and Human Leukocyte Antigen
by Karla Rottmayer, Henry Loeffler-Wirth, Thomas Gruenewald, Ilias Doxiadis and Claudia Lehmann
Biology 2023, 12(10), 1293; https://doi.org/10.3390/biology12101293 - 28 Sep 2023
Cited by 1 | Viewed by 1684
Abstract
During the coronavirus pandemic, evidence is growing that the severity, susceptibility and host immune response to SARS-CoV-2 infection can be highly variable. Several influencing factors have been discussed. Here, we investigated the humoral immune response against SARS-CoV-2 spike, S1, S2, the RBD, nucleocapsid [...] Read more.
During the coronavirus pandemic, evidence is growing that the severity, susceptibility and host immune response to SARS-CoV-2 infection can be highly variable. Several influencing factors have been discussed. Here, we investigated the humoral immune response against SARS-CoV-2 spike, S1, S2, the RBD, nucleocapsid moieties and S1 of seasonal coronaviruses: hCoV-229E, hCoV-HKU1, hCoV-NL63 and hCoV-OC43, as well as MERS-CoV and SARS-CoV, in a cohort of 512 individuals. A bead-based multiplex assay allowed simultaneous testing for all the above antigens and the identification of different antibody patterns. Then, we correlated these patterns with 11 HLA loci. Regarding the seasonal coronaviruses, we found a moderate negative correlation between antibody levels against hCoV-229E, hCoV-HKU1 and hCoV-NL63 and the SARS-CoV-2 antigens. This could be an indication of the original immunological imprinting. High and low antibody response patterns were distinguishable, demonstrating the individuality of the humoral response towards the virus. An immunogenetical factor associated with a high antibody response (formation of ≥4 different antibodies) was the presence of HLA A*26:01, C*02:02 and DPB1*04:01 alleles, whereas the HLA alleles DRB3*01:01, DPB1*03:01 and DB1*10:01 were enriched in low responders. A better understanding of this variable immune response could enable more individualized protective measures. Full article
(This article belongs to the Special Issue SARS-CoV-2 and Immunology)
Show Figures

Figure 1

Review

Jump to: Research

32 pages, 5551 KiB  
Review
Unveiling the Interplay—Vitamin D and ACE-2 Molecular Interactions in Mitigating Complications and Deaths from SARS-CoV-2
by Sunil J. Wimalawansa
Biology 2024, 13(10), 831; https://doi.org/10.3390/biology13100831 - 16 Oct 2024
Cited by 1 | Viewed by 1702
Abstract
The interaction of the SARS-CoV-2 spike protein with membrane-bound angiotensin-converting enzyme-2 (ACE-2) receptors in epithelial cells facilitates viral entry into human cells. Despite this, ACE-2 exerts significant protective effects against coronaviruses by neutralizing viruses in circulation and mitigating inflammation. While SARS-CoV-2 reduces ACE-2 [...] Read more.
The interaction of the SARS-CoV-2 spike protein with membrane-bound angiotensin-converting enzyme-2 (ACE-2) receptors in epithelial cells facilitates viral entry into human cells. Despite this, ACE-2 exerts significant protective effects against coronaviruses by neutralizing viruses in circulation and mitigating inflammation. While SARS-CoV-2 reduces ACE-2 expression, vitamin D increases it, counteracting the virus’s harmful effects. Vitamin D’s beneficial actions are mediated through complex molecular mechanisms involving innate and adaptive immune systems. Meanwhile, vitamin D status [25(OH)D concentration] is inversely correlated with severity, complications, and mortality rates from COVID-19. This study explores mechanisms through which vitamin D inhibits SARS-CoV-2 replication, including the suppression of transcription enzymes, reduced inflammation and oxidative stress, and increased expression of neutralizing antibodies and antimicrobial peptides. Both hypovitaminosis D and SARS-CoV-2 elevate renin levels, the rate-limiting step in the renin-angiotensin-aldosterone system (RAS); it increases ACE-1 but reduces ACE-2 expression. This imbalance leads to elevated levels of the pro-inflammatory, pro-coagulatory, and vasoconstricting peptide angiotensin-II (Ang-II), leading to widespread inflammation. It also causes increased membrane permeability, allowing fluid and viruses to infiltrate soft tissues, lungs, and the vascular system. In contrast, sufficient vitamin D levels suppress renin expression, reducing RAS activity, lowering ACE-1, and increasing ACE-2 levels. ACE-2 cleaves Ang-II to generate Ang(1–7), a vasodilatory, anti-inflammatory, and anti-thrombotic peptide that mitigates oxidative stress and counteracts the harmful effects of SARS-CoV-2. Excess ACE-2 molecules spill into the bloodstream as soluble receptors, neutralizing and facilitating the destruction of the virus. These combined mechanisms reduce viral replication, load, and spread. Hence, vitamin D facilitates rapid recovery and minimizes transmission to others. Overall, vitamin D enhances the immune response and counteracts the pathological effects of SARS-CoV-2. Additionally, data suggests that widely used anti-hypertensive agents—angiotensin receptor blockers and ACE inhibitors—may lessen the adverse impacts of SARS-CoV-2, although they are less potent than vitamin D. Full article
(This article belongs to the Special Issue SARS-CoV-2 and Immunology)
Show Figures

Graphical abstract

22 pages, 2156 KiB  
Review
From Alpha to Omicron: How Different Variants of Concern of the SARS-Coronavirus-2 Impacted the World
by Mickensone Andre, Lee-Seng Lau, Marissa D. Pokharel, Julian Ramelow, Florida Owens, Joseph Souchak, Juliet Akkaoui, Evan Ales, Harry Brown, Rajib Shil, Valeria Nazaire, Marko Manevski, Ngozi P. Paul, Maria Esteban-Lopez, Yasemin Ceyhan and Nazira El-Hage
Biology 2023, 12(9), 1267; https://doi.org/10.3390/biology12091267 - 21 Sep 2023
Cited by 23 | Viewed by 3886
Abstract
SARS-CoV-2, the virus that causes COVID-19, is prone to mutations and the generation of genetic variants. Since its first outbreak in 2019, SARS-CoV-2 has continually evolved, resulting in the emergence of several lineages and variants of concern (VOC) that have gained more efficient [...] Read more.
SARS-CoV-2, the virus that causes COVID-19, is prone to mutations and the generation of genetic variants. Since its first outbreak in 2019, SARS-CoV-2 has continually evolved, resulting in the emergence of several lineages and variants of concern (VOC) that have gained more efficient transmission, severity, and immune evasion properties. The World Health Organization has given these variants names according to the letters of the Greek Alphabet, starting with the Alpha (B.1.1.7) variant, which emerged in 2020, followed by the Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) variants. This review explores the genetic variation among different VOCs of SARS-CoV-2 and how the emergence of variants made a global impact on the pandemic. Full article
(This article belongs to the Special Issue SARS-CoV-2 and Immunology)
Show Figures

Figure 1

15 pages, 2092 KiB  
Review
Is There a Similarity in Serum Cytokine Profile between Patients with Periodontitis or 2019-Novel Coronavirus Infection?—A Scoping Review
by Archana Mootha
Biology 2023, 12(4), 550; https://doi.org/10.3390/biology12040550 - 4 Apr 2023
Viewed by 1971
Abstract
On 11 March 2020, the WHO declared a global emergency as a result of the ‘novel coronavirus infection’, which emerged from Wuhan, China, and rapidly spread across international borders. There is vast evidence that supports a direct link between oral cavities and this [...] Read more.
On 11 March 2020, the WHO declared a global emergency as a result of the ‘novel coronavirus infection’, which emerged from Wuhan, China, and rapidly spread across international borders. There is vast evidence that supports a direct link between oral cavities and this systemic circulation, but it is still unclear if oral conditions like periodontitis influenced the COVID-19 disease outcome. This scoping review highlights the fact that both periodontitis and COVID-19 independently increase serum pro-inflammatory cytokine levels, however there is a lack of documentation on if this biochemical profile synergizes with COVID-19 and/or periodontal severity in the same individuals. The purpose of this scoping review is to accumulate existing data on the serums IL-1β, IL-6, and TNF-α in COVID-19 and periodontitis patients and check if periodontitis negatively impacts the COVID-19 outcome, educating the population about the implications of COVID-19-related complications on their oral health, and vice versa, and motivating patients towards oral hygiene maintenance. Full article
(This article belongs to the Special Issue SARS-CoV-2 and Immunology)
Show Figures

Figure 1

Back to TopTop