Functional Biomimetic Materials and Devices for Biomedical Applications: 2nd Edition

A special issue of Biomimetics (ISSN 2313-7673). This special issue belongs to the section "Biomimetic Design, Constructions and Devices".

Deadline for manuscript submissions: closed (25 June 2024) | Viewed by 31356

Special Issue Editor

Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
Interests: biofabrication; biomaterials; antibacterial materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are pleased to announce a new Special Issue collection of the journal of Biomimetics, entitled “Functional Biomimetic Materials and Devices for Biomedical Applications”, for which we are collecting research articles, review articles, and short communications.

Recently, functional biomimetic materials and devices have attracted much interest because they possess remarkable properties, such as a super-hydrophobic or super-hydrophilic ability, anti-fouling ability, anti-bacterial adhesion ability, bactericidal ability, good cell affinity, etc. Thus, researchers have started to explore the potential applications of these promising functional biomimetic materials and devices in biomedical fields, including orthopedics, dentistry, antibacterial biomaterials, anticancer biomaterials, and so on.

This Special Issue aims to showcase contributions from researchers and thinkers in all realms of functional biomimetic materials and devices and welcomes theoretical, experimental, and review contributions from biomimeticians, physicists, biologists, material scientists, mathematicians, doctors, and engineers alike who are engaged and interested in this fast-growing field. All papers will be published in an open access format following a peer review.

Dr. Xiang Ge
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomimetics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomimetic surface modification
  • dental and orthopedic implants
  • micro-/nano-structured surfaces
  • biofabrication
  • bio-manufacturing
  • biomedical
  • biomaterials
  • metals
  • ceramics
  • polymers
  • composites
  • hydrogels
  • antibacterial
  • anti-infection
  • anti-inflammation
  • anticancer
  • antitumor
  • biomineralization
  • additive manufacturing
  • 3D printing
  • biomimetic devices
  • wearable devices

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 6549 KiB  
Article
Cell Biological and Antibacterial Evaluation of a New Approach to Zirconia Implant Surfaces Modified with MTA
by Beatriz Ferreira Fernandes, Neusa Silva, Mariana Brito Da Cruz, Gonçalo Garret, Óscar Carvalho, Filipe Silva, António Mata, Helena Francisco and Joana Faria Marques
Biomimetics 2024, 9(3), 155; https://doi.org/10.3390/biomimetics9030155 - 1 Mar 2024
Cited by 1 | Viewed by 1597
Abstract
Peri-implantitis continues to be one of the major reasons for implant failure. We propose a new approach to the incorporation of MTA into zirconia implant surfaces with Nd:YAG laser and investigate the biological and the microbiological responses of peri-implant cells. Discs of zirconia [...] Read more.
Peri-implantitis continues to be one of the major reasons for implant failure. We propose a new approach to the incorporation of MTA into zirconia implant surfaces with Nd:YAG laser and investigate the biological and the microbiological responses of peri-implant cells. Discs of zirconia stabilized with yttria and titanium were produced according to the following four study groups: Nd:YAG laser-textured zirconia coated with MTA (Zr MTA), Nd:YAG laser-textured zirconia (Zr textured), polished zirconia discs, and polished titanium discs (Zr and Ti). Surface roughness was evaluated by contact profilometry. Human osteoblasts (hFOB), gingival fibroblasts (HGF hTERT) and S. oralis were cultured on discs. Cell adhesion and morphology, cell differentiation markers and bacterial growth were evaluated. Zr textured roughness was significantly higher than all other groups. SEM images reveal cellular adhesion at 1 day in all samples in both cell lines. Osteoblasts viability was lower in the Zr MTA group, unlike fibroblasts viability, which was shown to be higher in the Zr MTA group compared with the Zr textured group at 3 and 7 days. Osteocalcin and IL-8 secretion by osteoblasts were higher in Zr MTA. The Zr textured group showed higher IL-8 values released by fibroblasts. No differences in S. oralis CFUs were observed between groups. The present study suggests that zirconia implant surfaces coated with MTA induced fibroblast proliferation and osteoblast differentiation; however, they did not present antibacterial properties. Full article
Show Figures

Figure 1

13 pages, 2910 KiB  
Article
Electrospun Materials Based on Cellulose Acetate Loaded with Rosmarinic Acid with Antioxidant and Antifungal Properties
by Mariya Spasova, Nikoleta Stoyanova and Olya Stoilova
Biomimetics 2024, 9(3), 152; https://doi.org/10.3390/biomimetics9030152 - 1 Mar 2024
Cited by 1 | Viewed by 1390
Abstract
Fibrous cellulose acetate (CA) materials loaded with rosmarinic acid (RA) were successfully created by one-pot electrospinning. In order to improve the water solubility of the polyphenolic acid and to facilitate its release from the fibrous materials, the non-ionic water-soluble polyethylene glycol (PEG) was [...] Read more.
Fibrous cellulose acetate (CA) materials loaded with rosmarinic acid (RA) were successfully created by one-pot electrospinning. In order to improve the water solubility of the polyphenolic acid and to facilitate its release from the fibrous materials, the non-ionic water-soluble polyethylene glycol (PEG) was added. Detailed characterization of the fabricated fibrous CA/RA and CA/PEG/RA materials was performed using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), UV-Vis spectroscopy and water contact angle analysis. The optimal ratio between CA, RA and PEG for preparation of defect-free and uniform fibers was accomplished by varying their concentrations. Furthermore, the incorporation of the PEG improved the hydrophilicity and wettability of the fibrous CA materials. Moreover, PEG facilitated the RA release and over 360 min, the amount released from fibrous CA/PEG/RA fibers was 91%, while that released from CA/RA materials was 53%. Both of the RA-containing fibrous materials, with and without PEG, manifested high antioxidant activity as determined by the DPPH free radical-scavenging method. In addition, the electrospun CA/PEG/RA materials displayed good antifungal activity against C. albicans. These features make the fibrous CA/PEG/RA materials promising candidates for treatment of wound infections. Full article
Show Figures

Graphical abstract

26 pages, 10920 KiB  
Article
The Influence of Hydroxyapatite Crystals on the Viscoelastic Behavior of Poly(vinyl alcohol) Braid Systems
by Tiago Quinaz, Tânia F. Freire, Andrea Olmos, Marcos Martins, Fernando B. N. Ferreira, Marcelo F. S. M. de Moura, Andrea Zille, Quyền Nguyễn, José Xavier and Nuno Dourado
Biomimetics 2024, 9(2), 93; https://doi.org/10.3390/biomimetics9020093 - 5 Feb 2024
Cited by 1 | Viewed by 1569
Abstract
Composites of poly(vinyl alcohol) (PVA) in the shape of braids, in combination with crystals of hydroxyapatite (HAp), were analyzed to perceive the influence of this bioceramic on both the quasi-static and viscoelastic behavior under tensile loading. Analyses involving energy-dispersive X-ray spectroscopy (EDS) and [...] Read more.
Composites of poly(vinyl alcohol) (PVA) in the shape of braids, in combination with crystals of hydroxyapatite (HAp), were analyzed to perceive the influence of this bioceramic on both the quasi-static and viscoelastic behavior under tensile loading. Analyses involving energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) allowed us to conclude that the production of a homogeneous layer of HAp on the braiding surface and the calcium/phosphate atomic ratio were comparable to those of natural bone. The maximum degradation temperature established by thermogravimetric analysis (TGA) showed a modest decrease with the addition of HAp. By adding HAp to PVA braids, an increase in the glass transition temperature (Tg) is noticed, as demonstrated by dynamic mechanical analysis (DMA) and differential thermal analysis (DTA). The PVA/HAp composite braids’ peaks were validated by Fourier transform infrared (FTIR) spectroscopy to be in good agreement with common PVA and HAp patterns. PVA/HAp braids, a solution often used in the textile industry, showed superior overall mechanical characteristics in monotonic tensile tests. Creep and relaxation testing showed that adding HAp to the eight and six-braided yarn architectures was beneficial. By exhibiting good mechanical performance and most likely increased biological qualities that accompany conventional care for bone applications in the fracture healing field, particularly multifragmentary ones, these arrangements can be applied as a fibrous fixation system. Full article
Show Figures

Graphical abstract

16 pages, 4949 KiB  
Article
Characterization of Gelatin-Polycaprolactone Membranes by Electrospinning
by Manuel Rodríguez-Martín, José Manuel Aguilar, Daniel Castro-Criado and Alberto Romero
Biomimetics 2024, 9(2), 70; https://doi.org/10.3390/biomimetics9020070 - 25 Jan 2024
Cited by 2 | Viewed by 2424
Abstract
New advances in materials science and medicine have enabled the development of new and increasingly sophisticated biomaterials. One of the most widely used biopolymers is polycaprolactone (PCL) because it has properties suitable for biomedical applications, tissue engineering scaffolds, or drug delivery systems. However, [...] Read more.
New advances in materials science and medicine have enabled the development of new and increasingly sophisticated biomaterials. One of the most widely used biopolymers is polycaprolactone (PCL) because it has properties suitable for biomedical applications, tissue engineering scaffolds, or drug delivery systems. However, PCL scaffolds do not have adequate bioactivity, and therefore, alternatives have been studied, such as mixing PCL with bioactive polymers such as gelatin, to promote cell growth. Thus, this work will deal with the fabrication of nanofiber membranes by means of the electrospinning technique using PCL-based solutions (12 wt.% and 20 wt.%) and PCL with gelatin (12 wt.% and 8 wt.%, respectively). Formic acid and acetic acid, as well as mixtures of both in different proportions, have been used to prepare the preliminary solutions, thus supporting the electrospinning process by controlling the viscosity of the solutions and, therefore, the size and uniformity of the fibers. The physical properties of the solutions and the morphological, mechanical, and thermal properties of the membranes were evaluated. Results demonstrate that it is possible to achieve the determined properties of the samples with an appropriate selection of polymer concentrations as well as solvents. Full article
Show Figures

Figure 1

21 pages, 9987 KiB  
Article
In Vitro Studies on 3D-Printed PLA/HA/GNP Structures for Bone Tissue Regeneration
by Andreea-Mariana Negrescu, Aura-Cătălina Mocanu, Florin Miculescu, Valentina Mitran, Andreea-Elena Constantinescu and Anisoara Cimpean
Biomimetics 2024, 9(1), 55; https://doi.org/10.3390/biomimetics9010055 - 19 Jan 2024
Cited by 3 | Viewed by 2336
Abstract
The successful regeneration of large-size bone defects remains one of the most critical challenges faced in orthopaedics. Recently, 3D printing technology has been widely used to fabricate reliable, reproducible and economically affordable scaffolds with specifically designed shapes and porosity, capable of providing sufficient [...] Read more.
The successful regeneration of large-size bone defects remains one of the most critical challenges faced in orthopaedics. Recently, 3D printing technology has been widely used to fabricate reliable, reproducible and economically affordable scaffolds with specifically designed shapes and porosity, capable of providing sufficient biomimetic cues for a desired cellular behaviour. Natural or synthetic polymers reinforced with active bioceramics and/or graphene derivatives have demonstrated adequate mechanical properties and a proper cellular response, attracting the attention of researchers in the bone regeneration field. In the present work, 3D-printed graphene nanoplatelet (GNP)-reinforced polylactic acid (PLA)/hydroxyapatite (HA) composite scaffolds were fabricated using the fused deposition modelling (FDM) technique. The in vitro response of the MC3T3-E1 pre-osteoblasts and RAW 264.7 macrophages revealed that these newly designed scaffolds exhibited various survival rates and a sustained proliferation. Moreover, as expected, the addition of HA into the PLA matrix contributed to mimicking a bone extracellular matrix, leading to positive effects on the pre-osteoblast osteogenic differentiation. In addition, a limited inflammatory response was also observed. Overall, the results suggest the great potential of the newly developed 3D-printed composite materials as suitable candidates for bone tissue engineering applications. Full article
Show Figures

Figure 1

Review

Jump to: Research

27 pages, 4812 KiB  
Review
Nanoparticles as Drug Delivery Vehicles for People with Cystic Fibrosis
by Eoin Hourihane and Katherine R. Hixon
Biomimetics 2024, 9(9), 574; https://doi.org/10.3390/biomimetics9090574 - 22 Sep 2024
Viewed by 1724
Abstract
Cystic Fibrosis (CF) is a life-shortening, genetic disease that affects approximately 145,000 people worldwide. CF causes a dehydrated mucus layer in the lungs, leading to damaging infection and inflammation that eventually result in death. Nanoparticles (NPs), drug delivery vehicles intended for inhalation, have [...] Read more.
Cystic Fibrosis (CF) is a life-shortening, genetic disease that affects approximately 145,000 people worldwide. CF causes a dehydrated mucus layer in the lungs, leading to damaging infection and inflammation that eventually result in death. Nanoparticles (NPs), drug delivery vehicles intended for inhalation, have become a recent source of interest for treating CF and CF-related conditions, and many formulations have been created thus far. This paper is intended to provide an overview of CF and the effect it has on the lungs, the barriers in using NP drug delivery vehicles for treatment, and three common material class choices for these NP formulations: metals, polymers, and lipids. The materials to be discussed include gold, silver, and iron oxide metallic NPs; polyethylene glycol, chitosan, poly lactic-co-glycolic acid, and alginate polymeric NPs; and lipid-based NPs. The novelty of this review comes from a less specific focus on nanoparticle examples, with the focus instead being on the general theory behind material function, why or how a material might be used, and how it may be preferable to other materials used in treating CF. Finally, this paper ends with a short discussion of the two FDA-approved NPs for treatment of CF-related conditions and a recommendation for the future usage of NPs in people with Cystic Fibrosis (pwCF). Full article
Show Figures

Graphical abstract

22 pages, 649 KiB  
Review
Effect of Immediate Dentin Sealing on the Bonding Performance of Indirect Restorations: A Systematic Review
by Fusun Ozer, Zeynep Batu Eken, Jessica Hao, Nuray Tuloglu and Markus B. Blatz
Biomimetics 2024, 9(3), 182; https://doi.org/10.3390/biomimetics9030182 - 17 Mar 2024
Cited by 3 | Viewed by 5172
Abstract
The popular immediate dentin sealing (IDS) technique is used to improve the bond strength of indirect restorations. This systematic review assessed whether bond strength is affected by the type of aging conditions, bonding agents, flowable resin composites, impression materials, temporary materials, and/or resin [...] Read more.
The popular immediate dentin sealing (IDS) technique is used to improve the bond strength of indirect restorations. This systematic review assessed whether bond strength is affected by the type of aging conditions, bonding agents, flowable resin composites, impression materials, temporary materials, and/or resin cement used within the IDS procedure. A comprehensive database search of PubMed, Embase, Scopus, Ovid Medline, Web of Sciences, Cochrane Library, Dentistry & Oral Sciences Source, and ProQuest was carried out up to 30 January 2024 without publication year or language limitations. Only in vitro full-texts regarding the effect of IDS on bond strength were included, and the quality of their methods was assessed via a Risk of Bias (RoB) test. In total, 1023 pertinent studies were initially found, and 60 articles were selected for review after screening for the title, abstract, and full texts. IDS application improves the bond strength of indirect restorations to dentin and reduces the negative effects of temporary materials on the bond durability of final indirect restorations. Filled dentin bonding agents or combinations with flowable resin composite are preferred to protect the IDS layer from conditioning procedures. Full article
Show Figures

Figure 1

31 pages, 948 KiB  
Review
Use of Biomaterials in 3D Printing as a Solution to Microbial Infections in Arthroplasty and Osseous Reconstruction
by Argyrios Periferakis, Aristodemos-Theodoros Periferakis, Lamprini Troumpata, Serban Dragosloveanu, Iosif-Aliodor Timofticiuc, Spyrangelos Georgatos-Garcia, Andreea-Elena Scheau, Konstantinos Periferakis, Ana Caruntu, Ioana Anca Badarau, Cristian Scheau and Constantin Caruntu
Biomimetics 2024, 9(3), 154; https://doi.org/10.3390/biomimetics9030154 - 1 Mar 2024
Cited by 9 | Viewed by 3263
Abstract
The incidence of microbial infections in orthopedic prosthetic surgeries is a perennial problem that increases morbidity and mortality, representing one of the major complications of such medical interventions. The emergence of novel technologies, especially 3D printing, represents a promising avenue of development for [...] Read more.
The incidence of microbial infections in orthopedic prosthetic surgeries is a perennial problem that increases morbidity and mortality, representing one of the major complications of such medical interventions. The emergence of novel technologies, especially 3D printing, represents a promising avenue of development for reducing the risk of such eventualities. There are already a host of biomaterials, suitable for 3D printing, that are being tested for antimicrobial properties when they are coated with bioactive compounds, such as antibiotics, or combined with hydrogels with antimicrobial and antioxidant properties, such as chitosan and metal nanoparticles, among others. The materials discussed in the context of this paper comprise beta-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP), hydroxyapatite, lithium disilicate glass, polyetheretherketone (PEEK), poly(propylene fumarate) (PPF), poly(trimethylene carbonate) (PTMC), and zirconia. While the recent research results are promising, further development is required to address the increasing antibiotic resistance exhibited by several common pathogens, the potential for fungal infections, and the potential toxicity of some metal nanoparticles. Other solutions, like the incorporation of phytochemicals, should also be explored. Incorporating artificial intelligence (AI) in the development of certain orthopedic implants and the potential use of AI against bacterial infections might represent viable solutions to these problems. Finally, there are some legal considerations associated with the use of biomaterials and the widespread use of 3D printing, which must be taken into account. Full article
Show Figures

Figure 1

19 pages, 5762 KiB  
Review
Biomimicking Atherosclerotic Vessels: A Relevant and (Yet) Sub-Explored Topic
by Joana Henriques, Ana M. Amaro and Ana P. Piedade
Biomimetics 2024, 9(3), 135; https://doi.org/10.3390/biomimetics9030135 - 23 Feb 2024
Viewed by 1819
Abstract
Atherosclerosis represents the etiologic source of several cardiovascular events, including myocardial infarction, cerebrovascular accidents, and peripheral artery disease, which remain the leading cause of mortality in the world. Numerous strategies are being delineated to revert the non-optimal projections of the World Health Organization, [...] Read more.
Atherosclerosis represents the etiologic source of several cardiovascular events, including myocardial infarction, cerebrovascular accidents, and peripheral artery disease, which remain the leading cause of mortality in the world. Numerous strategies are being delineated to revert the non-optimal projections of the World Health Organization, by both designing new diagnostic and therapeutic approaches or improving the interventional procedures performed by physicians. Deeply understanding the pathological process of atherosclerosis is, therefore, mandatory to accomplish improved results in these trials. Due to their availability, reproducibility, low expensiveness, and rapid production, biomimicking physical models are preferred over animal experimentation because they can overcome some limitations, mainly related to replicability and ethical issues. Their capability to represent any atherosclerotic stage and/or plaque type makes them valuable tools to investigate hemodynamical, pharmacodynamical, and biomechanical behaviors, as well as to optimize imaging systems and, thus, obtain meaningful prospects to improve the efficacy and effectiveness of treatment on a patient-specific basis. However, the broadness of possible applications in which these biomodels can be used is associated with a wide range of tissue-mimicking materials that are selected depending on the final purpose of the model and, consequently, prioritizing some materials’ properties over others. This review aims to summarize the progress in fabricating biomimicking atherosclerotic models, mainly focusing on using materials according to the intended application. Full article
Show Figures

Figure 1

40 pages, 16608 KiB  
Review
Biomaterials-Based Antioxidant Strategies for the Treatment of Oxidative Stress Diseases
by Maria Perez-Araluce, Tomasz Jüngst, Carmen Sanmartin, Felipe Prosper, Daniel Plano and Manuel M. Mazo
Biomimetics 2024, 9(1), 23; https://doi.org/10.3390/biomimetics9010023 - 3 Jan 2024
Cited by 6 | Viewed by 3280
Abstract
Oxidative stress is characterized by an increase in reactive oxygen species or a decrease in antioxidants in the body. This imbalance leads to detrimental effects, including inflammation and multiple chronic diseases, ranging from impaired wound healing to highly impacting pathologies in the neural [...] Read more.
Oxidative stress is characterized by an increase in reactive oxygen species or a decrease in antioxidants in the body. This imbalance leads to detrimental effects, including inflammation and multiple chronic diseases, ranging from impaired wound healing to highly impacting pathologies in the neural and cardiovascular systems, or the bone, amongst others. However, supplying compounds with antioxidant activity is hampered by their low bioavailability. The development of biomaterials with antioxidant capacity is poised to overcome this roadblock. Moreover, in the treatment of chronic inflammation, material-based strategies would allow the controlled and targeted release of antioxidants into the affected tissue. In this review, we revise the main causes and effects of oxidative stress, and survey antioxidant biomaterials used for the treatment of chronic wounds, neurodegenerative diseases, cardiovascular diseases (focusing on cardiac infarction, myocardial ischemia-reperfusion injury and atherosclerosis) and osteoporosis. We anticipate that these developments will lead to the emergence of new technologies for tissue engineering, control of oxidative stress and prevention of diseases associated with oxidative stress. Full article
Show Figures

Figure 1

25 pages, 7237 KiB  
Review
Gallium-Containing Materials and Their Potential within New-Generation Titanium Alloys for Biomedical Applications
by Rhianna McHendrie, Wenlong Xiao, Vi Khanh Truong and Reza Hashemi
Biomimetics 2023, 8(8), 573; https://doi.org/10.3390/biomimetics8080573 - 30 Nov 2023
Cited by 1 | Viewed by 2517
Abstract
With the rising demand for implantable orthopaedic medical devices and the dominance of device-associated infections, extensive research into the development of novel materials has been prompted. Among these, new-generation titanium alloys with biocompatible elements and improved stiffness levels have received much attention. Furthermore, [...] Read more.
With the rising demand for implantable orthopaedic medical devices and the dominance of device-associated infections, extensive research into the development of novel materials has been prompted. Among these, new-generation titanium alloys with biocompatible elements and improved stiffness levels have received much attention. Furthermore, the development of titanium-based materials that can impart antibacterial function has demonstrated promising results, where gallium has exhibited superior antimicrobial action. This has been evidenced by the addition of gallium to various biomaterials including titanium alloys. Therefore, this paper aims to review the antibacterial activity of gallium when incorporated into biomedical materials, with a focus on titanium-based alloys. First, discussion into the development of new-generation Ti alloys that possess biocompatible elements and reduced Young’s moduli is presented. This includes a brief review of the influence of alloying elements, processing techniques and the resulting biocompatibilities of the materials found in the literature. The antibacterial effect of gallium added to various materials, including bioglasses, liquid metals, and bioceramics, is then reviewed and discussed. Finally, a key focus is given to the incorporation of gallium into titanium systems for which the inherent mechanical, biocompatible, and antibacterial effects are reviewed and discussed in more detail, leading to suggestions and directions for further research in this area. Full article
Show Figures

Figure 1

18 pages, 3077 KiB  
Review
The Evolution of Robin Sequence Treatment Based on the Biomimetic Interdisciplinary Approach: A Historical Review
by Martin Čverha, Ivan Varga, Tereza Trenčanská, Barbora Šufliarsky and Andrej Thurzo
Biomimetics 2023, 8(7), 536; https://doi.org/10.3390/biomimetics8070536 - 10 Nov 2023
Cited by 2 | Viewed by 2840
Abstract
The Robin sequence is a congenital anomaly characterized by a triad of features: micrognathia, glossoptosis, and airway obstruction. This comprehensive historical review maps the evolution of approaches and appliances for its treatment from the past to the current modern possibilities of an interdisciplinary [...] Read more.
The Robin sequence is a congenital anomaly characterized by a triad of features: micrognathia, glossoptosis, and airway obstruction. This comprehensive historical review maps the evolution of approaches and appliances for its treatment from the past to the current modern possibilities of an interdisciplinary combination of modern engineering, medicine, materials, and computer science combined approach with emphasis on designing appliances inspired by nature and individual human anatomy. Current biomimetic designs are clinically applied, resulting in appliances that are more efficient, comfortable, sustainable, and safer than legacy traditional designs. This review maps the treatment modalities that have been used for patients with a Robin sequence over the years. Early management of the Robin sequence focused primarily on airway maintenance and feeding support, while current management strategies involve both nonsurgical and surgical interventions and biomimetic biocompatible personalized appliances. The goal of this paper was to provide a review of the evolution of management strategies for patients with the Robin sequence that led to the current interdisciplinary biomimetic approaches impacting the future of Robin Sequence treatment with biomimetics at the forefront. Full article
Show Figures

Graphical abstract

Back to TopTop