Molecularly Imprinted Polymers—Robust Artificial Receptor Materials for Chemical Sensing

A special issue of Chemosensors (ISSN 2227-9040).

Deadline for manuscript submissions: closed (30 November 2016) | Viewed by 55251

Special Issue Editor


E-Mail Website
Guest Editor
University of Vienna, Department of Physical Chemistry, Waehringer Strasse 38, A-1090 Vienna, Austria
Interests: molecular imprinting; artificial receptors; real-life measurements; QCM; capacitive measurements; low-cost sensing; bioanalyte sensing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Molecularly imprinted polymers (MIP) have generated substantial interest in the sensor community for more than two decades now: MIP-based chemo- and biosensors today are a thriving field generating large numbers of innovations and applications. The reasons for this are:

  • MIP are based on robust artificial matrices that are inherently long-term stable.
  • MIP are highly selective materials that can compete with biological receptors.
  • MIP are usually straightforward to synthesize.
  • MIP are available as thin films, (nano)particles and bulk materials to name but a few.

Whereas the beginning of imprinting saw addressing many different templates, by now other questions have come to focus, such as applicability of the respective sensors in real-life conditions or compatibility of the MIP with production processes. This Special Issue of Chemosensors is dedicated to the technique and aims a demonstrating novel analytical applications of MIP, as well as novel synthesis techniques and innovative polymerization approaches. Work based on any transducer—be it optical, electrical, electrochemical or acoustic—and any polymer morphology—thin film, bulk, particulate—is welcome. Furthermore, high international visibility of your work will be granted both by collecting papers on one topic at one place and by open access publishing.

Prof. Dr. Peter Lieberzeit
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Chemosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Molecular Imprinting
  • Sensor Applications
  • Chemical and Biological Analytes
  • MIP Thin Films
  • MIP Nanoparticles
  • MIP composites

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

2562 KiB  
Article
Selectivity and Efficiency of Conductive Molecularly Imprinted Polymer (c-MIP) Based on 5-Phenyl-Dipyrromethane and 5-Phenol-Dipyrromethane for Quorum Sensing Precursors Detection
by Sabina Susmel and Clara Comuzzi
Chemosensors 2017, 5(1), 5; https://doi.org/10.3390/chemosensors5010005 - 4 Feb 2017
Cited by 6 | Viewed by 6173
Abstract
Functional polymers that selectively recognize target compounds are developed by imprinting polymerization. In the present paper, two different dipyrromethanes, 5-phenol-dipyrromethane (5-pOH-DP) and 5-phenyl-dipyrromethane (5-ph-DP), are synthetized and investigated to develop conductive molecularly imprinted polymer (cMIP) sensors. As target molecules, two homoserine lactone derivatives [...] Read more.
Functional polymers that selectively recognize target compounds are developed by imprinting polymerization. In the present paper, two different dipyrromethanes, 5-phenol-dipyrromethane (5-pOH-DP) and 5-phenyl-dipyrromethane (5-ph-DP), are synthetized and investigated to develop conductive molecularly imprinted polymer (cMIP) sensors. As target molecules, two homoserine lactone derivatives were templated by an electrochemically driven polymerization process. Acyl-homoserine lactones (AHLs), also called homoserine lactones (HS), are a class of signaling molecules involved in bacterial quorum sensing (QS), which is a strategy of coordination among bacteria mediated by population density. The preparation of cMIP from 5-pOH-DP and 5-ph-DP in the presence of acetyl-homoserine lactone (Acetyl-HS) or carboxybenzyl-homoserine lactone (Cbz-HS) was performed by cyclic voltammetry (CV). The cMIP selectivity and sensitivity were assessed by microgravimetry (QCM). Both series of measurements were performed with the aid of an Electrochemical Quartz Crystal Microbalance (EQCM/QCM). The experimental evidences are discussed with respect to NMR measurements that were conducted to gain insight into the interactions established between monomers and templates. The NMR data interpretation offers preliminary information about the most probable positions involved in interaction development for both molecules and highlights the role of the hydration shell. The QCM-cMIP sensor was able to detect the analyte in the linear range from 10−8 mol·L−1 to 10−6 mol·L−1 and a limit of detection (LOD) of 22.3 ng (3σ of the blank signal) were evaluated. QCM rebinding tests demonstrated that cMIP selectivity was driven by the pendant group of dipyrromethane, which was also confirmed by the NMR data. Full article
Show Figures

Figure 1

2304 KiB  
Article
Nitrate Ion Selective Electrode Based on Ion Imprinted Poly(N-methylpyrrole)
by Ellen M. Bomar, George S. Owens and George M. Murray
Chemosensors 2017, 5(1), 2; https://doi.org/10.3390/chemosensors5010002 - 4 Jan 2017
Cited by 26 | Viewed by 8810
Abstract
A poly(N-methylpyrrole) based ion selective electrode (ISE) has been prepared by electro-polymerization of N-methylpyrrole using potassium nitrate as the supporting electrolyte. Electrochemical and chemical variables were used to optimize the potentiometric response of the electrodes and to maximize the selectivity [...] Read more.
A poly(N-methylpyrrole) based ion selective electrode (ISE) has been prepared by electro-polymerization of N-methylpyrrole using potassium nitrate as the supporting electrolyte. Electrochemical and chemical variables were used to optimize the potentiometric response of the electrodes and to maximize the selectivity for nitrate over potential interferences. The selectivity, longevity and stability of the ion-imprinted polymer give this electrode advantages over traditional nitrate ISEs. The best prototype electrode exhibits a linear potential response to nitrate ion within the concentration range of 5.0 × 10−6 to 0.1 M nitrate with a near Nernstian slope of −56.3 mV per decade (R2 = 0.9998) and a strong preference for the nitrate ion over other anions. The selectivity coefficients of the electrode were evaluated by the fixed interference method. The use of N-methylpyrrole has advantages over pyrrole in terms of selectivity and pH insensitivity. Full article
Show Figures

Figure 1

2722 KiB  
Article
Development and Application of Electrochemical Sensor Based on Molecularly Imprinted Polymer and Carbon Nanotubes for the Determination of Carvedilol
by Malena Karla Lombello Coelho, Juliana De Fátima Giarola, Anny Talita Maria Da Silva, César Ricardo Teixeira Tarley, Keyller Bastos Borges and Arnaldo César Pereira
Chemosensors 2016, 4(4), 22; https://doi.org/10.3390/chemosensors4040022 - 27 Nov 2016
Cited by 33 | Viewed by 5963
Abstract
This work describes the preparation of a glassy carbon electrode (GCE) modified with molecularly imprinted polymer (MIP) and multiwalled carbon nanotubes (MWCNTs) for determination of carvedilol (CAR). Electrochemical behavior of CAR on the modified electrode was evaluated using cyclic voltammetry. The best composition [...] Read more.
This work describes the preparation of a glassy carbon electrode (GCE) modified with molecularly imprinted polymer (MIP) and multiwalled carbon nanotubes (MWCNTs) for determination of carvedilol (CAR). Electrochemical behavior of CAR on the modified electrode was evaluated using cyclic voltammetry. The best composition was found to be 65% (m/m) of MIP. Under optimized conditions (pH 8.5 in 0.25 mol L−1 Britton–Robinson buffer and 0.1 mol L−1 KCl) the voltammetric method showed a linear response for CAR in the range of 50–325 µmol L−1 (R = 0.9755), with detection and quantification limits of 16.14 µmol L−1 and 53.8 µmol L−1, respectively. The developed method was successfully applied for determination of CAR in real samples of pharmaceuticals. The sensor presented good sensitivity, rapid detection of CAR, and quick and easy preparation. Furthermore, the material used as modifier has a simple synthesis and its amount utilized is very small, thus illustrating the economic feasibility of this sensor. Full article
Show Figures

Figure 1

2626 KiB  
Article
Molecularly Imprinted Quartz Crystal Microbalance Sensor (QCM) for Bilirubin Detection
by Çiğdem Çiçek, Fatma Yılmaz, Erdoğan Özgür, Handan Yavuz and Adil Denizli
Chemosensors 2016, 4(4), 21; https://doi.org/10.3390/chemosensors4040021 - 18 Nov 2016
Cited by 38 | Viewed by 8942
Abstract
This study aims the preparation of a QCM sensor for the detection of bilirubin in human plasma. Bilirubin-imprinted poly-(2-hydroxyethyl methacrylate-N-methacryloyl-l-tryptophan methyl ester) (PHEMATrp) nanofilm (MIP) on the gold surface of a QCM chip was synthesized by the molecular imprinting technique. Meanwhile, [...] Read more.
This study aims the preparation of a QCM sensor for the detection of bilirubin in human plasma. Bilirubin-imprinted poly-(2-hydroxyethyl methacrylate-N-methacryloyl-l-tryptophan methyl ester) (PHEMATrp) nanofilm (MIP) on the gold surface of a QCM chip was synthesized by the molecular imprinting technique. Meanwhile, the non-imprinted PHEMATrp (NIP) nanofilm was synthesized by the same experimental technique to examine the imprinting effect. Characterization of MIP and NIP nanofilms on the QCM chip surface was achieved by atomic force microscopy (AFM), ellipsometry, Fourier transform infrared spectrophotometry-attenuated total reflectance (FTIR-ATR) and contact angle measurements (CA). The observations indicated that the nanofilm was almost in a monolayer. Thereinafter, the imprinted and the non-imprinted QCM chips were connected to the QCM system to investigate kinetic and affinity properties. In order to examine the selectivity of the MIP-PHEMATrp nanofilm, competitive adsorption of bilirubin with cholesterol and estradiol was performed. Limit of detection (LOD) and limit of quantitation (LOQ) values were calculated as 0.45 μg/mL and 0.9 μg/mL, respectively. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

2404 KiB  
Review
Enzymes as Tools in MIP-Sensors
by Aysu Yarman, Katharina J. Jetzschmann, Bettina Neumann, Xiaorong Zhang, Ulla Wollenberger, Aude Cordin, Karsten Haupt and Frieder W. Scheller
Chemosensors 2017, 5(2), 11; https://doi.org/10.3390/chemosensors5020011 - 26 Mar 2017
Cited by 16 | Viewed by 8712
Abstract
Molecularly imprinted polymers (MIPs) have the potential to complement antibodies in bioanalysis, are more stable under harsh conditions, and are potentially cheaper to produce. However, the affinity and especially the selectivity of MIPs are in general lower than those of their biological pendants. [...] Read more.
Molecularly imprinted polymers (MIPs) have the potential to complement antibodies in bioanalysis, are more stable under harsh conditions, and are potentially cheaper to produce. However, the affinity and especially the selectivity of MIPs are in general lower than those of their biological pendants. Enzymes are useful tools for the preparation of MIPs for both low and high-molecular weight targets: As a green alternative to the well-established methods of chemical polymerization, enzyme-initiated polymerization has been introduced and the removal of protein templates by proteases has been successfully applied. Furthermore, MIPs have been coupled with enzymes in order to enhance the analytical performance of biomimetic sensors: Enzymes have been used in MIP-sensors as “tracers” for the generation and amplification of the measuring signal. In addition, enzymatic pretreatment of an analyte can extend the analyte spectrum and eliminate interferences. Full article
Show Figures

Scheme 1

3277 KiB  
Review
Gravimetric Viral Diagnostics: QCM Based Biosensors for Early Detection of Viruses
by Adeel Afzal, Adnan Mujahid, Romana Schirhagl, Sadia Zafar Bajwa, Usman Latif and Saima Feroz
Chemosensors 2017, 5(1), 7; https://doi.org/10.3390/chemosensors5010007 - 13 Feb 2017
Cited by 117 | Viewed by 15935
Abstract
Viruses are pathogenic microorganisms that can inhabit and replicate in human bodies causing a number of widespread infectious diseases such as influenza, gastroenteritis, hepatitis, meningitis, pneumonia, acquired immune deficiency syndrome (AIDS) etc. A majority of these viral diseases are contagious and can spread [...] Read more.
Viruses are pathogenic microorganisms that can inhabit and replicate in human bodies causing a number of widespread infectious diseases such as influenza, gastroenteritis, hepatitis, meningitis, pneumonia, acquired immune deficiency syndrome (AIDS) etc. A majority of these viral diseases are contagious and can spread from infected to healthy human beings. The most important step in the treatment of these contagious diseases and to prevent their unwanted spread is to timely detect the disease-causing viruses. Gravimetric viral diagnostics based on quartz crystal microbalance (QCM) transducers and natural or synthetic receptors are miniaturized sensing platforms that can selectively recognize and quantify harmful virus species. Herein, a review of the label-free QCM virus sensors for clinical diagnostics and point of care (POC) applications is presented with major emphasis on the nature and performance of different receptors ranging from the natural or synthetic antibodies to selective macromolecular materials such as DNA and aptamers. A performance comparison of different receptors is provided and their limitations are discussed. Full article
Show Figures

Figure 1

Back to TopTop