Advances in Authentication, Authorization and Privacy for Securing Smart Communications

A special issue of Cryptography (ISSN 2410-387X).

Deadline for manuscript submissions: 31 December 2024 | Viewed by 13322

Special Issue Editors


E-Mail Website
Guest Editor
Bachelor's Program of Artificial Intelligence and Information Security, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
Interests: information security; cryptography; blockchain; smart communications; healthcare communication security; smart grid communication
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Program of Artificial Intelligence and Information Security, Fu Jen Catholic University, New Taipei City 242062, Taiwan
Interests: information and network security; wireless sensor networks; mobile computing security; Internet of Things security; cloud computing security; blockchain security and its application; RFID security and its application; telemedicine information system security; security protocols for ad hoc networks; information retrieval and dictionary search
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Engineering, University of Mount Union, Alliance, OH 44601-3993, USA
Interests: ML/federated learning in wireless systems; heterogeneous networks; massive MIMO; reconfigurable intelligent surface-assisted networks; mmWave communication networks; energy harvesting; full-duplex communications; cognitive radio; small cell; non-orthogonal multiple access (NOMA); physical layer security; UAV networks; visible light communication; IoT system
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Lagos, Akoka, Lagos 100213, Nigeria
Interests: 6G wireless communication systems; cell-free massive MIMO systems; energy-efficient wireless systems; propagation measurements; channel modeling; artificial intelligence; machine learning; wireless security systems; cryptography; chaotic communication; sustainable communication; blockchain technology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Modern architectures and systems are changing our activities of daily life and various industrial processes due to increased automation in various areas. 5G/6G, Internet of Things (IoT), Internet of Drones (IoD), Internet of Everything (IoE), and other emerging communication technologies facilitate the development of various smart places and modern communications. Thanks to smart communication environments, many important applications have been developed, including healthcare, electricity grids, satellite communication, underwater communication, and vehicular networks, among others. However, problems have arisen related to data security and user privacy during the communication in these systems; secure and efficient authentication, authorization, and accounting mechanisms are required to address them. Existing cryptographic methods are still constrained in terms of processing and communication ability. Moreover, there may be a trade-off consideration between privacy and authentication, or between security and performance found in various previously published works. As a matter of fact, there is a lack of sufficient research that efficiently addresses these concerns. This Special Issue calls for research papers, communications, and review articles on topics including, but not limited to, the following:

  • Secure and anonymous designs for smart systems.
  • New designs of cryptographic tool and protocol.
  • New authentication schemes.
  • Novel authorization methods.
  • Innovative accounting tools.
  • Applied cryptography.
  • Post-quantum cryptography.
  • Lightweight cryptography.
  • Cryptographic verification solutions.
  • Smart identification mechanisms.
  • New digital-signature-based smart communication systems.
  • Smart digital-certificate-based communication schemes.

Prof. Dr. Cheng-Chi Lee
Dr. Tuan-Vinh Le
Prof. Dr. Chun-Ta Li
Dr. Dinh-Thuan Do
Dr. Agbotiname Lucky Imoize
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cryptography is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • information security
  • data privacy
  • cryptography
  • authentication
  • authorization
  • accounting
  • identification
  • post-quantum
  • digital signature
  • digital certificate
  • smart systems
  • internet of things
  • internet of everything

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 2973 KiB  
Article
Next-Generation Block Ciphers: Achieving Superior Memory Efficiency and Cryptographic Robustness for IoT Devices
by Saadia Aziz, Ijaz Ali Shoukat, Mohsin Iftikhar, Mohsin Murtaza, Abdulmajeed M. Alenezi, Cheng-Chi Lee and Imran Taj
Cryptography 2024, 8(4), 47; https://doi.org/10.3390/cryptography8040047 - 23 Oct 2024
Viewed by 746
Abstract
Traditional cryptographic methods often need complex designs that require substantial memory and battery power, rendering them unsuitable for small handheld devices. As the prevalence of these devices continues to rise, there is a pressing need to develop smart, memory-efficient cryptographic protocols that provide [...] Read more.
Traditional cryptographic methods often need complex designs that require substantial memory and battery power, rendering them unsuitable for small handheld devices. As the prevalence of these devices continues to rise, there is a pressing need to develop smart, memory-efficient cryptographic protocols that provide both high speed and robust security. Current solutions, primarily dependent on dynamic permutations, fall short in terms of encryption and decryption speeds, the cryptographic strength, and the memory efficiency. Consequently, the evolution of lightweight cryptographic algorithms incorporating randomised substitution properties is imperative to meet the stringent security demands of handheld devices effectively. In this paper, we present an advanced design of lightweight block ciphers that enhances traditional dynamic permutations with innovative randomised substitutions. This design utilises straightforward randomized encryption methods such as XOR, nibble swap, count ones, and left shift. The cryptographic robustness of our proposed block cipher has been rigorously tested through several standardised statistical tests, as recommended by the National Institute of Standards and Technology (NIST). These evaluations confirm that our algorithm maintains strong cryptographic properties with randomised substitutions and outperforms existing models in several key aspects. Moreover, comparative assessments reveal that our algorithm achieves a throughput of 853.31 Kbps while consuming only 1510 bytes of memory and demonstrating over 60% avalanche properties, significantly outperforming other solutions in terms of CPU utilisation and memory consumption. These results underscore the efficacy of our approach in fulfilling the advanced security requirements of modern handheld devices. Full article
Show Figures

Figure 1

16 pages, 7959 KiB  
Article
Cryptanalysis of Dual-Stage Permutation Encryption Using Large-Kernel Convolutional Neural Network and Known Plaintext Attack
by Ching-Chun Chang, Shuying Xu, Kai Gao and Chin-Chen Chang
Cryptography 2024, 8(3), 41; https://doi.org/10.3390/cryptography8030041 - 11 Sep 2024
Viewed by 651
Abstract
Reversible data-hiding in encrypted images (RDHEI) plays a pivotal role in preserving privacy within images stored on cloud platforms. Recently, Wang et al. introduced a dual-stage permutation encryption scheme, which is highly compatible with RDHEI techniques. In this study, we undertake an exhaustive [...] Read more.
Reversible data-hiding in encrypted images (RDHEI) plays a pivotal role in preserving privacy within images stored on cloud platforms. Recently, Wang et al. introduced a dual-stage permutation encryption scheme, which is highly compatible with RDHEI techniques. In this study, we undertake an exhaustive examination of the characteristics inherent to the dual-stage permutation scheme and propose two cryptanalysis schemes leveraging a large-kernel convolutional neural network (LKCNN) and a known plaintext attack (KPA) scheme, respectively. Our experimental findings demonstrate the effectiveness of our cryptanalysis schemes in breaking the dual-stage permutation encryption scheme. Based on our investigation, we highlight significant security vulnerabilities in the dual-stage permutation encryption scheme, raising concerns about its suitability for secure image storage and privacy protection in cloud environments. Full article
Show Figures

Figure 1

19 pages, 1371 KiB  
Article
Evaluating the Security of Merkle Trees: An Analysis of Data Falsification Probabilities
by Oleksandr Kuznetsov, Alex Rusnak, Anton Yezhov, Kateryna Kuznetsova, Dzianis Kanonik and Oleksandr Domin
Cryptography 2024, 8(3), 33; https://doi.org/10.3390/cryptography8030033 - 1 Aug 2024
Cited by 1 | Viewed by 1642
Abstract
Addressing the critical challenge of ensuring data integrity in decentralized systems, this paper delves into the underexplored area of data falsification probabilities within Merkle Trees, which are pivotal in blockchain and Internet of Things (IoT) technologies. Despite their widespread use, a comprehensive understanding [...] Read more.
Addressing the critical challenge of ensuring data integrity in decentralized systems, this paper delves into the underexplored area of data falsification probabilities within Merkle Trees, which are pivotal in blockchain and Internet of Things (IoT) technologies. Despite their widespread use, a comprehensive understanding of the probabilistic aspects of data security in these structures remains a gap in current research. Our study aims to bridge this gap by developing a theoretical framework to calculate the probability of data falsification, taking into account various scenarios based on the length of the Merkle path and hash length. The research progresses from the derivation of an exact formula for falsification probability to an approximation suitable for cases with significantly large hash lengths. Empirical experiments validate the theoretical models, exploring simulations with diverse hash lengths and Merkle path lengths. The findings reveal a decrease in falsification probability with increasing hash length and an inverse relationship with longer Merkle paths. A numerical analysis quantifies the discrepancy between exact and approximate probabilities, underscoring the conditions for the effective application of the approximation. This work offers crucial insights into optimizing Merkle Tree structures for bolstering security in blockchain and IoT systems, achieving a balance between computational efficiency and data integrity. Full article
Show Figures

Figure 1

13 pages, 1408 KiB  
Article
Efficient and Universal Merkle Tree Inclusion Proofs via OR Aggregation
by Oleksandr Kuznetsov, Alex Rusnak, Anton Yezhov, Dzianis Kanonik, Kateryna Kuznetsova and Oleksandr Domin
Cryptography 2024, 8(3), 28; https://doi.org/10.3390/cryptography8030028 - 5 Jul 2024
Viewed by 1568
Abstract
Zero-knowledge proofs have emerged as a powerful tool for enhancing privacy and security in blockchain applications. However, the efficiency and scalability of proof systems remain a significant challenge, particularly in the context of Merkle tree inclusion proofs. Traditional proof aggregation techniques based on [...] Read more.
Zero-knowledge proofs have emerged as a powerful tool for enhancing privacy and security in blockchain applications. However, the efficiency and scalability of proof systems remain a significant challenge, particularly in the context of Merkle tree inclusion proofs. Traditional proof aggregation techniques based on AND logic suffer from a high verification complexity and data communication overhead, limiting their practicality for large-scale applications. In this paper, we propose a novel proof aggregation approach based on OR logic, which enables the generation of compact and universally verifiable proofs for Merkle tree inclusion. By adapting and extending the concept of OR composition from Sigma protocols, we achieve a proof size that is independent of the number of leaves in the tree, and verification can be performed using any single valid leaf hash. This represents a significant improvement over AND aggregation, which requires the verifier to process all leaf hashes. We formally define the OR aggregation logic; describe the process of generating universal proofs; and provide a comparative analysis that demonstrates the advantages of our approach in terms of proof size, verification data, and universality. Furthermore, we discuss the potential of combining OR and AND aggregation logics to create complex acceptance functions, enabling the development of expressive and efficient proof systems for various blockchain applications. The proposed techniques have the potential to significantly enhance the scalability, efficiency, and flexibility of zero-knowledge proof systems, paving the way for more practical and adaptive solutions in large-scale blockchain ecosystems. Full article
Show Figures

Figure 1

15 pages, 854 KiB  
Article
Enhancing Smart Communication Security: A Novel Cost Function for Efficient S-Box Generation in Symmetric Key Cryptography
by Oleksandr Kuznetsov, Nikolay Poluyanenko, Emanuele Frontoni and Sergey Kandiy
Cryptography 2024, 8(2), 17; https://doi.org/10.3390/cryptography8020017 - 25 Apr 2024
Cited by 2 | Viewed by 1685
Abstract
In the realm of smart communication systems, where the ubiquity of 5G/6G networks and IoT applications demands robust data confidentiality, the cryptographic integrity of block and stream cipher mechanisms plays a pivotal role. This paper focuses on the enhancement of cryptographic strength in [...] Read more.
In the realm of smart communication systems, where the ubiquity of 5G/6G networks and IoT applications demands robust data confidentiality, the cryptographic integrity of block and stream cipher mechanisms plays a pivotal role. This paper focuses on the enhancement of cryptographic strength in these systems through an innovative approach to generating substitution boxes (S-boxes), which are integral in achieving confusion and diffusion properties in substitution–permutation networks. These properties are critical in thwarting statistical, differential, linear, and other forms of cryptanalysis, and are equally vital in pseudorandom number generation and cryptographic hashing algorithms. The paper addresses the challenge of rapidly producing random S-boxes with desired cryptographic attributes, a task notably arduous given the complexity of existing generation algorithms. We delve into the hill climbing algorithm, exploring various cost functions and their impact on computational complexity for generating S-boxes with a target nonlinearity of 104. Our contribution lies in proposing a new cost function that markedly reduces the generation complexity, bringing down the iteration count to under 50,000 for achieving the desired S-box. This advancement is particularly significant in the context of smart communication environments, where the balance between security and performance is paramount. Full article
Show Figures

Figure 1

20 pages, 2089 KiB  
Article
Cryptanalysis of Two Conditional Privacy Preserving Authentication Schemes for Vehicular Ad Hoc Networks
by Ahmad Mohamad Kabil, Heba Aslan and Marianne Azer
Cryptography 2024, 8(1), 4; https://doi.org/10.3390/cryptography8010004 - 24 Jan 2024
Cited by 2 | Viewed by 2411
Abstract
Conditional Privacy Preserving Authentication (CPPA) schemes are an effective way of securing communications in vehicular ad hoc networks (VANETs), as well as ensuring user privacy and accountability. Cryptanalysis plays a crucial role in pointing out the vulnerabilities in existing schemes to enable the [...] Read more.
Conditional Privacy Preserving Authentication (CPPA) schemes are an effective way of securing communications in vehicular ad hoc networks (VANETs), as well as ensuring user privacy and accountability. Cryptanalysis plays a crucial role in pointing out the vulnerabilities in existing schemes to enable the development of more resilient ones. In 2019, Zhang proposed a CPPA scheme for VANET security (PA-CRT), based on identity batch verification (IBV) and Chinese Remainder Theorem (CRT). In this paper, we cryptanalyze Zhang’s scheme and point out its vulnerability to impersonation and repudiation attacks. In 2023, Zhang’s scheme was cryptanalyzed by Tao; however, we point out flaws in Tao’s cryptanalysis due to invalid assumptions; hence, we propose countermeasures to Tao’s attacks. Furthermore, in 2021, Xiong proposed a Certificateless Aggregate Signature (CLAS) scheme which is also cryptanalyzed in this paper. Finally, we analyze the causes and countermeasures by pointing out the vulnerabilities in each scheme that enabled us to launch successful attacks and proposing changes that would fortify these schemes against similar attacks in the future. Full article
Show Figures

Figure 1

20 pages, 5308 KiB  
Article
A Novel and Secure Fake-Modulus Based Rabin-Ӡ Cryptosystem
by Raghunandan Kemmannu Ramesh, Radhakrishna Dodmane, Surendra Shetty, Ganesh Aithal, Monalisa Sahu and Aditya Kumar Sahu
Cryptography 2023, 7(3), 44; https://doi.org/10.3390/cryptography7030044 - 19 Sep 2023
Cited by 6 | Viewed by 2426
Abstract
Electronic commerce (E-commerce) transactions require secure communication to protect sensitive information such as credit card numbers, personal identification, and financial data from unauthorized access and fraud. Encryption using public key cryptography is essential to ensure secure electronic commerce transactions. RSA and Rabin cryptosystem [...] Read more.
Electronic commerce (E-commerce) transactions require secure communication to protect sensitive information such as credit card numbers, personal identification, and financial data from unauthorized access and fraud. Encryption using public key cryptography is essential to ensure secure electronic commerce transactions. RSA and Rabin cryptosystem algorithms are widely used public key cryptography techniques, and their security is based on the assumption that it is computationally infeasible to factorize the product of two large prime numbers into its constituent primes. However, existing variants of RSA and Rabin cryptosystems suffer from issues like high computational complexity, low speed, and vulnerability to factorization attacks. To overcome the issue, this article proposes a new method that introduces the concept of fake-modulus during encryption. The proposed method aims to increase the security of the Rabin cryptosystem by introducing a fake-modulus during encryption, which is used to confuse attackers who attempt to factorize the public key. The fake-modulus is added to the original modulus during encryption, and the attacker is unable to distinguish between the two. As a result, the attacker is unable to factorize the public key and cannot access the sensitive information transmitted during electronic commerce transactions. The proposed method’s performance is evaluated using qualitative and quantitative measures. Qualitative measures such as visual analysis and histogram analysis are used to evaluate the proposed system’s quality. To quantify the performance of the proposed method, the entropy of a number of occurrences for the pixels of cipher text and differential analysis of plaintext and cipher text is used. When the proposed method’s complexity is compared to a recent variant of the Rabin cryptosystem, it can be seen that it is more complex to break the proposed method—represented as O(ɲ× τ) which is higher than Rabin-P (O(ɲ)) algorithms. Full article
Show Figures

Figure 1

Back to TopTop