Sustainable Materials in the Forest Products Industry

A special issue of Forests (ISSN 1999-4907). This special issue belongs to the section "Wood Science and Forest Products".

Deadline for manuscript submissions: closed (31 May 2024) | Viewed by 12565

Special Issue Editors


E-Mail Website
Guest Editor
1. Biomaterials and Nanotechnology Research Group & BioNanoTeam, 34473 Istanbul, Türkiye
2. Turkish Academy of Sciences, 06670 Ankara, Türkiye
3. Department of Forest Products Engineering, Faculty of Forestry, Istanbul University Cerrahpasa, 34473 Istanbul, Türkiye
Interests: sustainable materials; green materials; nanomaterials/nanocomposites; lignocellulosic biomaterials (nanocellulose, nanolignin); thermal analysis (DMTA/TMA, TGA, DSC); renewable energy (biomass energy, pellets, and briquettes); industry 4.0

E-Mail Website
Guest Editor
1. Turkish Academy of Sciences, 06670 Ankara, Türkiye
2. Department of Environmental Engineering, Igdir University, 76000 Igdir, Türkiye
Interests: composites; lignocellulosic biomaterials; wood-based composites; non-wood forest products industry; wood preservation technology; energy

Special Issue Information

Dear Colleagues,

Sustainable development in the forest products industry explores the origins of sustainability as it applies to forestry and forest products. Sustainable forest management is one of the most significant ways of reducing pressure on the world’s forests. The bio-based economy necessitates the sustainable utilization of bioresources for the production of a range of products. Lignocellulosic biomass is the most abundant and renewable resource on Earth, which may be processed in a variety of ways and provides both environmental and performance benefits. Lignocellulosic-based sustainable materials are composed mainly of three basic structural components: cellulose, lignin, and hemicellulose. Lignocellulosic-based sustainable resources have the potential to replace plastics and materials that have been traditionally based on fossil resources. The development of high-performance bio-based and sustainable materials is a crucial aspect for the bio-based industry's long-term growth. The aim of this Special Issue is to evaluate and cover novel research in the area of sustainable materials in the forest products industry, in both original and review articles.

Dr. Zeki Candan
Dr. Mehmet Hakki Alma
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Forests is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sustainable materials
  • green materials
  • composites
  • biomaterials
  • biocomposites
  • forest products industry
  • wood-based materials
  • furniture
  • pulp and paper science
  • nanoscience and nanotechnology
  • renewable energy
  • biomass energy
  • lignocellulosic materials
  • bioadhesives
  • carbon footprint

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 5329 KiB  
Article
Performance Properties and Finite Element Modelling of Forest-Based Bionanomaterials/Activated Carbon Composite Film for Sustainable Future
by Mustafa Zor, Ferhat Şen, Orhan Özçelik, Hikmet Yazıcı and Zeki Candan
Forests 2024, 15(9), 1591; https://doi.org/10.3390/f15091591 - 10 Sep 2024
Viewed by 648
Abstract
Thanks to its highly crystalline structure and excellent thermal, optical, electrical and mechanical properties, carbon and its derivatives are considered the preferred reinforcement material in composites used in many industrial applications, especially in the forest and forest products sector, including oil, gas and [...] Read more.
Thanks to its highly crystalline structure and excellent thermal, optical, electrical and mechanical properties, carbon and its derivatives are considered the preferred reinforcement material in composites used in many industrial applications, especially in the forest and forest products sector, including oil, gas and aviation. Since hydroxyethyl cellulose (HEC) is a biopolymer, it has poor mechanical and thermal properties. These properties need to be strengthened with various additives. This study aims to improve the thermal and mechanical properties of hydroxyethyl cellulose by preparing hydroxyethyl cellulose/activated carbon (HEC/AC) composite materials. With this study, composites were obtained for the first time and their mechanical properties were examined using a 3D numerical modeling technique. The thermal stability of the prepared composite materials was investigated via thermal gravimetric analysis (TGA). The samples were heated from 30 °C to 750 °C with a heating rate of 10 °C/min under a nitrogen atmosphere and their masses were measured subsequently. The mechanical properties of the composites were investigated via the tensile test. The viscoelastic properties of the composite films were determined with dynamic mechanical thermal analyses (DMTA) and their morphologies were examined with scanning electron microscopy (SEM) images. According to the results, the best F3 sample (films containing 3 wt.% activated carbon) had an elastic modulus of 168.3 MPa, a thermal conductivity value of 0.068 W/mK, the maximum mass loss was at 328.20 °C and the initial storage modulus at 30 °C was 206.13 MPa. It was determined that the hydroxyethyl cellulose composite films containing 3 wt.% activated carbon revealed the optimum results in terms of both thermal conductivity and viscoelastic response and showed that the obtained composite films could be used in industrial applications where thermal conductivity was required. Full article
(This article belongs to the Special Issue Sustainable Materials in the Forest Products Industry)
Show Figures

Figure 1

10 pages, 2395 KiB  
Article
Studying the Impact of Heat Treatments and Distance from Pith on the Sorption Behavior of Tree of Heaven Wood (Ailanthus altissima (Mill.) Swingle)
by Fanni Fodor, Lukas Emmerich, Norbert Horváth, Róbert Németh and Tamás Hofmann
Forests 2024, 15(7), 1223; https://doi.org/10.3390/f15071223 - 15 Jul 2024
Viewed by 857
Abstract
The application of tree of heaven (Ailanthus altissima (Mill.) Swingle) is constrained by its poor durability and dimensional stability. Despite exhibiting promising physical and mechanical properties comparable to ash wood (Fraxinus excelsior L.), it is regarded as an invasive species and [...] Read more.
The application of tree of heaven (Ailanthus altissima (Mill.) Swingle) is constrained by its poor durability and dimensional stability. Despite exhibiting promising physical and mechanical properties comparable to ash wood (Fraxinus excelsior L.), it is regarded as an invasive species and receives limited attention in wood property enhancement research. This study subjected tree of heaven to heat treatment at 180 °C and 200 °C to investigate its sorption characteristics using dynamic vapor sorption tests. The results revealed a 13% reduction in equilibrium moisture content at 95% relative humidity and 25 °C after thermal modification at 180 °C and a 25% reduction after thermal modification at 200 °C. Increasing the treatment temperature lowered the moisture content ratio to 0.76 and shortened the conditioning time by up to 10%. The highest hysteresis, ranging from 3.39% to 3.88%, was observed at 70% relative humidity. Full article
(This article belongs to the Special Issue Sustainable Materials in the Forest Products Industry)
Show Figures

Figure 1

15 pages, 4196 KiB  
Article
Fire Resistance of One-Sided, Surface-Charred Silver Fir and European Ash Timber
by David Hans Ebner, Marius-Catalin Barbu, Ondřej Prokop and Petr Čermák
Forests 2024, 15(7), 1109; https://doi.org/10.3390/f15071109 - 27 Jun 2024
Viewed by 1362
Abstract
The aim of this work was to investigate the fire resistance of silver fir (Abies alba L.) and European ash (Fraxinus excelsior) boards charred using the traditional yakisugi method and to compare the results with the fire resistance of non-charred [...] Read more.
The aim of this work was to investigate the fire resistance of silver fir (Abies alba L.) and European ash (Fraxinus excelsior) boards charred using the traditional yakisugi method and to compare the results with the fire resistance of non-charred boards as a reference and exploit its potential as a material with fire protection properties. After the boards were surface-charred on one side, specimens with different char thicknesses, resulting from their different position in the chimney, were selected from each wood species and subjected to analysis. Specimens with dimensions of 250 × 90 mm underwent a small flame test, those of 220 × 170 mm received indirect flame exposure by constant heat flux radiation from an infra-red emitter and those of 600 × 600 mm were subjected to a fire resistance test according to EN 1363-1:2020. The results of the small flame tests showed statistically significant fire resistance enhancement of specimens with 6 and 3 mm char-layer thickness in fir and ash wood, respectively, and a 110% and 75% improvement when compared to reference specimens. The constant heat flux radiation tests did not reveal any significant differences between the reference and charred specimens. The up-scaled fire resistance test, in which an assembled panel was exposed to flame, also indicated significant improvement. The reference burn-through time of fir and ash specimens was improved significantly with increasing char layer thickness, resulting in 10%–26% of fire resistance improvement for fir and 5%–12% for ash wood specimens. These results, based on the tests performed, suggest that the one-sided surface-charring of wood can enhance its fire resistance; however, this was mostly achieved in boards with the thickest char layer in both wood species studied and not all fire resistance indicators were considered. Further in-depth studies are required to better understand the complex behaviour of charred wood in response to fire. Full article
(This article belongs to the Special Issue Sustainable Materials in the Forest Products Industry)
Show Figures

Figure 1

13 pages, 2365 KiB  
Article
Validation of the Physical and Mechanical Properties of Eucalyptus benthamii Maiden & Cambage Wood and Cross Laminated Timber Panels Using the Finite Element Method
by Matheus Zanghelini Teixeira, Rodrigo Figueiredo Terezo, Alexsandro Bayestorff da Cunha, Gustavo Faggiani Tomio, Hector Bovo Coelho and Camila Alves Corrêa
Forests 2024, 15(5), 881; https://doi.org/10.3390/f15050881 - 19 May 2024
Viewed by 1100
Abstract
Cross Laminated Timber (CLT) is a structurally complex panel that poses challenges in analysis due to the anisotropic nature of wood and the orthotropic characteristics of the composite. Numerical modeling using the Finite Element Method (FEM) offers a viable solution for analysis, particularly [...] Read more.
Cross Laminated Timber (CLT) is a structurally complex panel that poses challenges in analysis due to the anisotropic nature of wood and the orthotropic characteristics of the composite. Numerical modeling using the Finite Element Method (FEM) offers a viable solution for analysis, particularly for addressing boundary value problems that are analytically challenging. Therefore, it is crucial to validate the experimental properties to ensure accurate results. The objective of this study was to validate the physical and mechanical properties for structural modeling using FEM, based on the characterization of Eucalyptus benthamii Maiden & Cambage wood and CLT panels. For wood characterization, the basic and apparent density were determined, and mechanical tests, including static bending, parallel-to-grain compression, and shear tests, were conducted. Utilizing the same batch of wood, three-layer CLT panels were manufactured and subjected to a non-destructive three-point bending test. This test was simulated in RFEM finite element software, employing Mindlin’s theory, and the displacements obtained were compared with the experimental method. The results from a Student’s t-test at a 5% significance level indicated no significant difference between the experimental and numerical methods, suggesting that the properties of the experimental E. benthamii CLT panel can be accurately represented by FEM. Full article
(This article belongs to the Special Issue Sustainable Materials in the Forest Products Industry)
Show Figures

Figure 1

16 pages, 4343 KiB  
Article
Physical and Mechanical Properties of Fiberboard Made of MDF Residues and Phase Change Materials
by Gustavo E. Rodríguez, Cecilia Bustos Ávila and Alain Cloutier
Forests 2024, 15(5), 802; https://doi.org/10.3390/f15050802 - 30 Apr 2024
Cited by 1 | Viewed by 1942
Abstract
The wood-based panel industry is experiencing an excessive accumulation of solid residues from the production of medium-density fiberboard (MDF) panels and moldings. It is possible to create new MDF products with acceptable physical and mechanical properties by revaluing MDF residues. Additionally, those products’ [...] Read more.
The wood-based panel industry is experiencing an excessive accumulation of solid residues from the production of medium-density fiberboard (MDF) panels and moldings. It is possible to create new MDF products with acceptable physical and mechanical properties by revaluing MDF residues. Additionally, those products’ thermal properties can be improved by incorporating phase change materials (PCMs). This study aims to develop a wood-based fiberboard made of MDF residues, capable of storing thermal energy. Two types of PCMs (liquid and microencapsulated), two PCM ratios (2% and 6%), and two types of adhesives (urea-formaldehyde and phenol-formaldehyde) were used to produce eight different types of panels. The vertical density profile, thickness swelling, water absorption, internal bond (IB), and static bending properties—modulus of elasticity (MOE) and modulus of rupture (MOR)—were determined for each panel type. The specific heat of the panels was also determined. The results show the panels’ densities were greater than 700 kg/m3. Thickness swelling in water improved by 23% compared to the reference value of the control panel PCMs after PCM incorporation. The highest IB value was 1.30 MPa, which is almost three times the minimum required by regulation standards. The incorporation of PCMs reduced the panels’ bending properties compared to the properties of the control panels. Even though the values obtained are sufficient to comply with the minimum values set out in ANSI standard A208.2 with an MOE value of 2072.4 MPa and the values obtained are sufficient to comply with the minimum standards with an MOE value of 2072.4 MPa and an MOR value of 16.4 MPa, when microencapsulated PCM is used, the specific heat of the panels is increased by more than 100% over that of the control panels. This study developed fiberboards with adequate physical and mechanical properties and capable of storing thermal energy. Full article
(This article belongs to the Special Issue Sustainable Materials in the Forest Products Industry)
Show Figures

Figure 1

17 pages, 4766 KiB  
Article
Visible Light-Induced Photocatalytic Degradation of Methylene Blue Using Copper-Doped Carbon Dots One-Step Derived from CCA-Wood
by Dan Xing, Jingfa Zhang, Sara Magdouli, Yubo Tao, Peng Li, Hassine Bouafif and Ahmed Koubaa
Forests 2024, 15(4), 680; https://doi.org/10.3390/f15040680 - 10 Apr 2024
Viewed by 1113
Abstract
Developing novel eco-friendly broad-spectrum visible light photocatalysts for dye removal is one of the urgent problems for water treatment. Here, copper-doped carbon dots (CDs) were reported to be directly fabricated from chromated copper arsenate (CCA) wood waste for the photocatalytic degradation of the [...] Read more.
Developing novel eco-friendly broad-spectrum visible light photocatalysts for dye removal is one of the urgent problems for water treatment. Here, copper-doped carbon dots (CDs) were reported to be directly fabricated from chromated copper arsenate (CCA) wood waste for the photocatalytic degradation of the methylene blue dye. The properties of the resulting CDs were thoroughly characterized and analyzed, preceding an investigation into the adsorption kinetics of dye degradation. The kinetic study showed that reactant concentration was the rate-limiting factor. The obtained CDs showed a 151 mg/g photocatalytic degradation capacity. Comparing pure CDs to CDs/TiO2 composites, the former demonstrated higher photodegradation efficiency. This superiority can be attributed to the synergistic action of adsorption and photocatalytic degradation working in tandem. This study prepared Cu doped CDs and elucidated the photocatalysis mechanism of methylene blue degradation by CDs. The photodegradation of organic dyes through CDs derived from waste CCA wood emerges as an eco-friendly, facile, and highly efficient method. Full article
(This article belongs to the Special Issue Sustainable Materials in the Forest Products Industry)
Show Figures

Figure 1

16 pages, 2823 KiB  
Article
Dimensional Stability and Mechanical Properties of Gmelina arborea Roxb. Wood Thermally Modified through Open Reactor and Low-Pressure Closed Reactor Systems
by Samuel Oluyinka Olaniran and Holger Militz
Forests 2024, 15(3), 403; https://doi.org/10.3390/f15030403 - 20 Feb 2024
Viewed by 1515
Abstract
This study focused on the thermal modification of Gmelina arborea Roxb. wood following processes using the open reactor and low-pressure closed reactor systems. The aim is to determine the optimum treatment conditions suitable for gmelina wood due to its poor drying characteristics using [...] Read more.
This study focused on the thermal modification of Gmelina arborea Roxb. wood following processes using the open reactor and low-pressure closed reactor systems. The aim is to determine the optimum treatment conditions suitable for gmelina wood due to its poor drying characteristics using the low-pressure closed reactor thermal modification. Subsequent to thermal modification under both processes, the dimensional stability and mechanical properties of gmelina wood were investigated. Effects of the thermal modifications under the open and low-pressure closed reactor systems on mechanical properties were additionally reported. The outcome of this investigation revealed that mass loss increased with increasing treatment temperatures, but minimal mass losses were observed for samples modified in the low-pressure closed reactor system. Due to the low-pressure regime used in the closed reactor system, a lesser improvement was found in volumetric shrinkage, fibre saturation point and tangential-to-radial swelling compared to the improvement in these properties in the open reactor system. Results further revealed that the mechanical properties of gmelina wood deteriorated more rapidly after modification in the open reactor system. Since the properties of modified gmelina wood are comparable at 180 °C under both systems, the closed reactor system will be investigated further to arrive at a suitable treatment condition under higher pressure variations. The thermal modification of gmelina wood with the closed reactor system is more promising in delivering a better quality of modified gmelina wood. Full article
(This article belongs to the Special Issue Sustainable Materials in the Forest Products Industry)
Show Figures

Figure 1

12 pages, 8112 KiB  
Article
Preparation and Properties of Soft-/Hard-Switchable Transparent Wood with 0 °C as a Boundary
by Yang Liu, Yi Zhang, Jianhui Guo, Gaiping Guo and Cheng Li
Forests 2024, 15(2), 384; https://doi.org/10.3390/f15020384 - 19 Feb 2024
Cited by 3 | Viewed by 1557
Abstract
Transparent wood has excellent optical and thermal properties and has great potential utilization value in energy-saving building materials, optoelectronic devices, and decorative materials. In this work, transparent wood with soft-/hard-switchable and shape recovery capabilities was prepared by introducing an epoxy-based polymer with a [...] Read more.
Transparent wood has excellent optical and thermal properties and has great potential utilization value in energy-saving building materials, optoelectronic devices, and decorative materials. In this work, transparent wood with soft-/hard-switchable and shape recovery capabilities was prepared by introducing an epoxy-based polymer with a glass transition temperature of about 0 °C into the delignified wood template. The epoxy resin was well filled in the pore structure of the delignified wood, and the as-prepared wood exhibited excellent transparency; the optical transmittance and haze of the transparent wood with a thickness of 2.0 mm were approximately 70% and 95%, respectively. Because the glass transition temperature of the epoxy-based polymer was about 0 °C, the prepared transparent wood was rigid below 0 °C and flexible above °C; meanwhile, the transparent wood exhibited shape change and shape recovery properties. Incorporating optical transparency and soft-/hard-switchable ability into the transparent wood opens a new avenue for developing advanced functional wood-based materials. Full article
(This article belongs to the Special Issue Sustainable Materials in the Forest Products Industry)
Show Figures

Figure 1

12 pages, 1882 KiB  
Article
Micro-Fibrillated Cellulose in Lignin–Phenol–Formaldehyde Adhesives for Plywood Production
by Sheikh Ali Ahmed, Reza Hosseinpourpia and Stergios Adamopoulos
Forests 2023, 14(11), 2249; https://doi.org/10.3390/f14112249 - 15 Nov 2023
Cited by 1 | Viewed by 1232
Abstract
Petrochemical-based phenol–formaldehyde (PF) adhesives are widely used in plywood production. To substitute phenol in the synthesis of PF adhesives, lignin can be added due to its structural similarity to phenol. Moreover, micro-fibrillated cellulose (MFC) can further enhance the bond performance, mechanical properties, and [...] Read more.
Petrochemical-based phenol–formaldehyde (PF) adhesives are widely used in plywood production. To substitute phenol in the synthesis of PF adhesives, lignin can be added due to its structural similarity to phenol. Moreover, micro-fibrillated cellulose (MFC) can further enhance the bond performance, mechanical properties, and toughness of adhesive systems. Thus, the aim of this study was to evaluate the adhesion performance of lignin–PF (LPF) adhesives reinforced with MFC. In LPF formulations, three levels of MFC (0, 15, and 30 wt% based on the total solid content of adhesives) were added to the homogenous adhesive mixture. Three-layer plywood panels from birch (Betula pendula Roth.) veneers were assembled after hot pressing at 130 °C under two pressing durations, e.g., 60 and 75 s/mm. Tensile shear strength was measured at dry (20 °C and 65% RH) and wet conditions (water soaked at room temperature for 24 h). The results indicated that the addition of lignin reduced the strength of LPF adhesives in both dry and wet conditions compared to the control PF adhesive. However, MFC reinforcement enhanced the shear strength properties of the plywood. Furthermore, a longer pressing time of 75 s/mm slightly increased the shear strength. Full article
(This article belongs to the Special Issue Sustainable Materials in the Forest Products Industry)
Show Figures

Figure 1

Back to TopTop