Water Resources Management under Uncertainty and Climate Change

A special issue of Hydrology (ISSN 2306-5338). This special issue belongs to the section "Hydrology–Climate Interactions".

Deadline for manuscript submissions: closed (31 August 2024) | Viewed by 13564

Special Issue Editors


E-Mail Website
Guest Editor
Department of Geosciences, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
Interests: hydrogeology; water resources; modelling; uncertainty analysis

E-Mail Website
Guest Editor
Institut Terre et Environnement de Strasbourg, Universit´e de Strasbourg, CNRS, ENGEES, UMR 7063, 67084 Strasbourg, France
Interests: water resources; modelling; seawater intrusion
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Hydrological processes are inherently uncertain for various reasons, such as the stochastic nature of many natural parameters and measurement errors and computation/modelling errors, among others. Climate change is another significant factor that increases the uncertainty of hydrological processes, due to unexpected climate phenomena such as floods, droughts and wildfires. Extreme events such as heavy rainfall, snowstorms, floods and increases in temperature affect the water cycle in many ways, which requires special attention. Some of the direct impacts of climate change include water resource availability, land degradation, water pollution, flood risk and land use. Indirect impacts include land management, population, and economic and social development. Sustainable water resource management incorporates environmental, economic, and social factors, which requires a reliable knowledge of all factors affecting these sustainability measures. This makes water resource management a real challenge for hydrologists because of the interconnections between these factors and the uncertainty involved.

This Special Issue aims to compile state-of-the-art original research work on uncertainty quantification in hydrology and water resource management, considering the impact of climate change. 

Suggested themes and article types for submissions include:

  • New methods of modelling uncertainty in hydrological processes.
  • Water resource management considering climate change.
  • Impact of uncertainty and climate change on water quality.
  • Using artificial intelligence tools to cope with uncertainty in hydrology.

Dr. Husam Musa Baalousha
Dr. Marwan Fahs
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Hydrology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hydrological processes
  • uncertainty analysis
  • water resources management
  • climate change

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 3661 KiB  
Article
Estimation of Reservoir Storage Capacity Using the Gould-Dincer Formula with the Aid of Possibility Theory
by Nikos Mylonas, Christos Tzimopoulos, Basil Papadopoulos and Nikiforos Samarinas
Hydrology 2024, 11(10), 172; https://doi.org/10.3390/hydrology11100172 - 11 Oct 2024
Viewed by 809
Abstract
This paper presents a method for estimating reservoir storage capacity using the Gould–Dincer normal formula (G-DN), enhanced by the possibility theory. The G-DN equation is valuable for regional studies of reservoir reliability, particularly under climate change scenarios, using regional statistics. However, because the [...] Read more.
This paper presents a method for estimating reservoir storage capacity using the Gould–Dincer normal formula (G-DN), enhanced by the possibility theory. The G-DN equation is valuable for regional studies of reservoir reliability, particularly under climate change scenarios, using regional statistics. However, because the G-DN formula deals with measured data, it introduces a degree of uncertainty and fuzziness that traditional probability theory struggles to address. Possibility theory, an extension of fuzzy set theory, offers a suitable framework for managing this uncertainty and fuzziness. In this study, the G-DN formula is adapted to incorporate fuzzy logic, and the possibilistic nature of reservoir capacity is translated into a probabilistic framework using α-cuts from the possibility theory. These α-cuts approximate probability confidence intervals with high confidence. Applying the proposed methodology, in the present crisp case with the storage capacity D = 0.75, the value of the capacity C was found to be 1271×106 m3, and that for D = 0.5 was 634.5×106 m3. On the other hand, in the fuzzy case using the possibility theory, the value of the capacity for D = 0.75 is the internal [315,5679]×106 m3 and for D = 0.5 the value is interval [158,2839]×106 m3, with a probability of ≥95% and a risk level of α = 5% for both cases. The proposed approach could be used as a robust tool in the toolkit of engineers working on irrigation, drainage, and water resource projects, supporting informed and effective engineering decisions. Full article
(This article belongs to the Special Issue Water Resources Management under Uncertainty and Climate Change)
Show Figures

Figure 1

18 pages, 4007 KiB  
Article
Agricultural Water Footprints and Productivity in the Colorado River Basin
by George B. Frisvold and Dari Duval
Hydrology 2024, 11(1), 5; https://doi.org/10.3390/hydrology11010005 - 30 Dec 2023
Cited by 1 | Viewed by 3981
Abstract
The Colorado River provides water to 40 million people in the U.S. Southwest, with river basin spanning 250,000 square miles (647,497 km2). Quantitative water rights assigned to U.S. states, Mexico, and tribes in the Colorado Basin exceed annual streamflows. Climate change [...] Read more.
The Colorado River provides water to 40 million people in the U.S. Southwest, with river basin spanning 250,000 square miles (647,497 km2). Quantitative water rights assigned to U.S. states, Mexico, and tribes in the Colorado Basin exceed annual streamflows. Climate change is expected to limit streamflows further. To balance water demands with supplies, unprecedented water-use cutbacks have been proposed, primarily for agriculture, which consumes more than 60% of the Basin’s water. This study develops county-level, Basin-wide measures of agricultural economic water productivity, water footprints, and irrigation cash rent premiums, to inform conservation programs and compensation schemes. These measures identify areas where conservation costs in terms of foregone crop production or farm income are high or low. Crop sales averaged USD 814 per acre foot (AF) (USD 0.66/m3) of water consumed in the Lower Basin and 131 USD/AF (USD 0.11/m3) in the Upper Basin. Crop sales minus crop-specific input costs averaged 485 USD/AF (USD 0.39/m3) in the Lower Basin and 93 USD/AF (USD 0.08 per m3) in the Upper Basin. The blue water footprint (BWF) was 1.2 AF/USD 1K (1480 m3/USD1K) of water per thousand dollars of crop sales in the Lower Basin and 7.6 AF/USD 1K (9374 m3/USD1K) in the Upper Basin. Counties with higher water consumption per acre have a lower BWF. Full article
(This article belongs to the Special Issue Water Resources Management under Uncertainty and Climate Change)
Show Figures

Figure 1

23 pages, 3457 KiB  
Article
Calibration of Land-Use-Dependent Evaporation Parameters in Distributed Hydrological Models Using MODIS Evaporation Time Series Data
by Markus C. Casper, Zoé Salm, Oliver Gronz, Christopher Hutengs, Hadis Mohajerani and Michael Vohland
Hydrology 2023, 10(12), 216; https://doi.org/10.3390/hydrology10120216 - 21 Nov 2023
Viewed by 2431
Abstract
The land-use-specific calibration of evapotranspiration parameters in hydrologic modeling is challenging due to the lack of appropriate reference data. We present a MODIS-based calibration approach of vegetation-related evaporation parameters for two mesoscale catchments in western Germany with the physically based distributed hydrological model [...] Read more.
The land-use-specific calibration of evapotranspiration parameters in hydrologic modeling is challenging due to the lack of appropriate reference data. We present a MODIS-based calibration approach of vegetation-related evaporation parameters for two mesoscale catchments in western Germany with the physically based distributed hydrological model WaSiM-ETH. Time series of land-use-specific actual evapotranspiration (ETa) patterns were generated from MOD16A2 evapotranspiration and CORINE land-cover data from homogeneous image pixels for the major land-cover types in the region. Manual calibration was then carried out for 1D single-cell models, each representing a specific land-use type based on aggregated 11-year mean ETa values using SKout and PBIAS as objective functions (SKout > 0.8, |PBIAS| < 5%). The spatio-temporal evaluation on the catchment scale was conducted by comparing the simulated ETa pattern to six daily ETa grids derived from LANDSAT data. The results show a clear overall improvement in the SPAEF (spatial efficiency metric) for most land-use types, with some deficiencies for two scenes in spring and late summer due to phenological variation and a particularly dry hydrological system state, respectively. The presented method demonstrates a significant improvement in the simulation of ETa regarding both time and spatial scale. Full article
(This article belongs to the Special Issue Water Resources Management under Uncertainty and Climate Change)
Show Figures

Figure 1

22 pages, 71383 KiB  
Article
Comparison of the Fuzzy Analytic Hierarchy Process (F-AHP) and Fuzzy Logic for Flood Exposure Risk Assessment in Arid Regions
by Husam Musa Baalousha, Anis Younes, Mohamed A. Yassin and Marwan Fahs
Hydrology 2023, 10(7), 136; https://doi.org/10.3390/hydrology10070136 - 26 Jun 2023
Cited by 15 | Viewed by 3175
Abstract
Flood risk assessment is an important tool for urban planning, land development, and hydrological analysis. The flood risks are very high in arid countries due to the nature of the rainfall resulting from thunderstorms and the land cover, which comprises mostly very dry [...] Read more.
Flood risk assessment is an important tool for urban planning, land development, and hydrological analysis. The flood risks are very high in arid countries due to the nature of the rainfall resulting from thunderstorms and the land cover, which comprises mostly very dry arid soil. Several methods have been used to assess the flood risk, depending on various factors that affect the likelihood of occurrence. However, the selection of these factors and the weight assigned to them remain rather arbitrary. This study assesses the risk of flood occurrence in arid regions based on land cover, soil type, precipitation, elevation, and flow accumulation. Thematic maps of the aforementioned factors for the study area were prepared using GIS. The Fuzzy Analytic Hierarchy Process (F-AHP) was used to calculate the likelihood of the flood occurrence, and land use was used to assess the exposure impact. Using the likelihood map (i.e., probability) from the Fuzzy-AHP and an exposure map, the flood risk was assessed. This method was applied to Qatar as a case study. Results were compared with those produced by fuzzy logic. To explore the pairwise importance of the F-AHP, equal weight analysis was performed. The resulting risk map shows that the majority of urbanized areas in Qatar are within the high-risk zone, with some smaller parts within the very high flood-risk area. The majority of the country is within the low-risk zone. Some areas, especially land depressions, are located within the intermediate-risk category. Comparison of Fuzzy logic and the F-AHP showed that both have similarities in the low-risk and differences in the high-risk zones. This reveals that the F-AHP is probably more accurate than other methods as it accounts for higher variability. Full article
(This article belongs to the Special Issue Water Resources Management under Uncertainty and Climate Change)
Show Figures

Figure 1

16 pages, 4082 KiB  
Article
Compound Climate Risk: Diagnosing Clustered Regional Flooding at Inter-Annual and Longer Time Scales
by Yash Amonkar, James Doss-Gollin and Upmanu Lall
Hydrology 2023, 10(3), 67; https://doi.org/10.3390/hydrology10030067 - 16 Mar 2023
Cited by 2 | Viewed by 2212
Abstract
The potential for extreme climate events to cluster in space and time has driven increased interest in understanding and predicting compound climate risks. Through a case study on floods in the Ohio River Basin, we demonstrated that low-frequency climate variability could drive spatial [...] Read more.
The potential for extreme climate events to cluster in space and time has driven increased interest in understanding and predicting compound climate risks. Through a case study on floods in the Ohio River Basin, we demonstrated that low-frequency climate variability could drive spatial and temporal clustering of the risk of regional climate extremes. Long records of annual maximum streamflow from 24 USGS gauges were used to explore the regional spatiotemporal patterns of flooding and their associated large-scale climate modes. We found that the dominant time scales of flood risk in this basin were in the interannual (6–7 years), decadal (11–13 years), and secular bands and that different sub-regions within the Ohio River Basin responded differently to large-scale forcing. We showed that the leading modes of streamflow variability were associated with ENSO and secular trends. The low-frequency climate modes translated into epochs of increased and decreased flood risk with multiple extreme floods or the absence of extreme floods, thus informing the nature of compound climate-induced flood risk. A notable finding is that the secular trend was associated with an east-to-west shift in the flood incidence and the associated storm track. This is consistent with some expectations of climate change projections. Full article
(This article belongs to the Special Issue Water Resources Management under Uncertainty and Climate Change)
Show Figures

Figure 1

Back to TopTop