ijms-logo

Journal Browser

Journal Browser

Adipose Tissue Diseases: Physiopathology, Molecular Mechanism, Diagnosis and Treatment

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Endocrinology and Metabolism".

Deadline for manuscript submissions: closed (31 August 2024) | Viewed by 15688

Special Issue Editors


E-Mail
Guest Editor

E-Mail Website
Guest Editor
Diagnostic and Vascular Rehabilitation Unit, Marino Hospital ADL Roma 6, Rome, Italy
Interests: lymphedema

Special Issue Information

Dear Colleagues,

Adipose tissue is, to all intents and purposes, an organ. Therefore, its specific physiology with endocrine action must be considered. Adipose networks with the other organs through receptors; like other organs, it is subject to specific pathologies.

This Special Issue will discuss the pathologies that directly affect adipose tissue, such as obesity, lipedema, Dercum and Madelung syndromes, multiple lipomatosis and lipodystrophy. It will also explore the etiopathology, diagnostic tools, and treatment or management methods, with particular focus on dietary modifications, food supplements and physical exercise. Finally, it will clarify the biochemical mechanisms involved in the occurrence of these conditions, such as genetics and epigenetics.

Dr. Roberto Cannataro
Dr. Sandro Michelini
Dr. Erika Cione
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • lipedema
  • inflammation
  • body fat
  • adipose tissue
  • Dercum disease
  • lipomatosis
  • lipodystrophy
  • adipocyte

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 1783 KiB  
Article
The Role of Lymph-Adipose Crosstalk in Alcohol-Induced Perilymphatic Adipose Tissue Dysfunction
by Kourtney D. Weaver, Liz Simon, Patricia E. Molina and Flavia Souza-Smith
Int. J. Mol. Sci. 2024, 25(19), 10811; https://doi.org/10.3390/ijms251910811 - 8 Oct 2024
Viewed by 579
Abstract
Chronic alcohol use leads to metabolic dysfunction in adipose tissue. The underlying mechanisms and the contribution of alcohol-induced adipose tissue dysfunction to systemic metabolic dysregulation are not well understood. In our previous studies, we found that chronic alcohol feeding induces mesenteric lymphatic leakage, [...] Read more.
Chronic alcohol use leads to metabolic dysfunction in adipose tissue. The underlying mechanisms and the contribution of alcohol-induced adipose tissue dysfunction to systemic metabolic dysregulation are not well understood. In our previous studies, we found that chronic alcohol feeding induces mesenteric lymphatic leakage, perilymphatic adipose tissue (PLAT) inflammation, and local insulin resistance in rats. The goal of this study was to further explore the link between alcohol-induced lymphatic leakage and PLAT immunometabolic dysregulation, locally and systemically, using in vivo and ex vivo approaches. Male rats received a Lieber–DeCarli liquid diet, of which 36% of the calories were from alcohol, for 10 weeks. Time-matched control animals were pair-fed. Adipokine levels were measured in PLAT, subcutaneous fat, plasma, and mesenteric lymph samples. Glucose tolerance was assessed after 10 weeks. Further, we used a novel ex vivo lymph-stimulated naïve PLAT explant approach to modeling lymph leakage to assess changes in adipokine secretion and expression of proinflammatory markers after stimulation with lymph from alcohol- or pair-fed animals. Our data show that chronic alcohol-fed rats presented PLAT-specific decreases in adiponectin and leptin levels, alterations in the expression of genes involved in lipid metabolic pathways, and associated impaired whole-body glucose homeostasis. Further, we found that direct naïve PLAT stimulation with lymph contents from alcohol-fed animals increased IL-6 expression in demonstrating the ability of lymph contents to differentially impact naïve adipose tissue. Overall, chronic alcohol feeding leads to depot-specific alterations in metabolic profile, impaired systemic glucose tolerance, and lymph-induced adipose tissue inflammation. The specific lymph components leading to PLAT immunometabolic dysregulation remain to be determined. Full article
Show Figures

Figure 1

17 pages, 3914 KiB  
Article
Lycium chinense Mill Induces Anti-Obesity and Anti-Diabetic Effects In Vitro and In Vivo
by Wona Jee, Hong-Seok Cho, Seok Woo Kim, Hanbit Bae, Won-Seok Chung, Jae-Heung Cho, Hyungsuk Kim, Mi-Yeon Song and Hyeung-Jin Jang
Int. J. Mol. Sci. 2024, 25(16), 8572; https://doi.org/10.3390/ijms25168572 - 6 Aug 2024
Viewed by 976
Abstract
This study investigated the effects of Lycium chinense Mill (LCM) extract on obesity and diabetes, using both in vitro and high-fat diet (HFD)-induced obesity mouse models. We found that LCM notably enhanced glucagon-like peptide-1 (GLP-1) secretion in NCI-h716 cells from 411.4 ± 10.75 [...] Read more.
This study investigated the effects of Lycium chinense Mill (LCM) extract on obesity and diabetes, using both in vitro and high-fat diet (HFD)-induced obesity mouse models. We found that LCM notably enhanced glucagon-like peptide-1 (GLP-1) secretion in NCI-h716 cells from 411.4 ± 10.75 pg/mL to 411.4 ± 10.75 pg/mL compared to NT (78.0 ± 0.67 pg/mL) without causing cytotoxicity, implying the involvement of Protein Kinase A C (PKA C) and AMP-activated protein kinase (AMPK) in its action mechanism. LCM also decreased lipid droplets and lowered the expression of adipogenic and lipogenic indicators, such as Fatty Acid Synthase (FAS), Fatty Acid-Binding Protein 4 (FABP4), and Sterol Regulatory Element-Binding Protein 1c (SREBP1c), indicating the suppression of adipocyte differentiation and lipid accumulation. LCM administration to HFD mice resulted in significant weight loss (41.5 ± 3.3 g) compared to the HFD group (45.1 ± 1.8 g). In addition, improved glucose tolerance and serum lipid profiles demonstrated the ability to counteract obesity-related metabolic issues. Additionally, LCM exhibited hepatoprotective properties by reducing hepatic lipid accumulation and diminishing white adipose tissue mass and adipocyte size, thereby demonstrating its effectiveness against hepatic steatosis and adipocyte hypertrophy. These findings show that LCM can be efficiently used as a natural material to treat obesity and diabetes, providing a new approach for remedial and therapeutic purposes. Full article
Show Figures

Figure 1

21 pages, 6973 KiB  
Article
Effect of Arthrospira maxima Phycobiliproteins, Rosiglitazone, and 17β-Estradiol on Lipogenic and Inflammatory Gene Expression during 3T3-L1 Preadipocyte Cell Differentiation
by Ruth Marina García-García and María Eugenia Jaramillo-Flores
Int. J. Mol. Sci. 2024, 25(14), 7566; https://doi.org/10.3390/ijms25147566 - 10 Jul 2024
Viewed by 771
Abstract
The study evaluated the effects of Arthrospira maxima phycobiliproteins (PBPs), rosiglitazone (RSG), and 17β-estradiol (E) on the differentiation process of 3T3-L1 cells and on their regulation of lipogenic and inflammatory gene expression at different stages of the process. The results showed that phycobiliproteins [...] Read more.
The study evaluated the effects of Arthrospira maxima phycobiliproteins (PBPs), rosiglitazone (RSG), and 17β-estradiol (E) on the differentiation process of 3T3-L1 cells and on their regulation of lipogenic and inflammatory gene expression at different stages of the process. The results showed that phycobiliproteins promoted cell proliferation after 24 h of treatment. Furthermore, for all three treatments, the regulation of the highest number of markers occurred on days 6 and 12 of differentiation, regardless of when the treatment was applied. Phycobiliproteins reduced lipid droplet accumulation on days 3, 6, 10, and 13 of the adipogenic process, while rosiglitazone showed no differences compared to the control. On day 6, both phycobiliproteins and rosiglitazone positively regulated Acc1 mRNA. Meanwhile, all three treatments negatively regulated Pparγ and C/ebpα. Phycobiliproteins and estradiol also negatively regulated Ucp1 and Glut4 mRNAs. Rosiglitazone and estradiol, on the other hand, negatively regulated Ppara and Il-6 mRNAs. By day 12, phycobiliproteins and rosiglitazone upregulated Pparγ mRNA and negatively regulated Tnfα and Il-1β. Additionally, phycobiliproteins and estradiol positively regulated Il-6 and negatively regulated Ppara, Ucp2, Acc1, and Glut4. Rosiglitazone and estradiol upregulate C/ebpα and Ucp1 mRNAs. The regulation exerted by phycobiliproteins on the mRNA expression of the studied markers was dependent on the phase of cell differentiation. The results of this study highlight that phycobiliproteins have an anti-adipogenic and anti-inflammatory effect by reducing the expression of adipogenic, lipogenic, and inflammatory genes in 3T3-L1 cells at different stages of the differentiation process. Full article
Show Figures

Figure 1

31 pages, 2416 KiB  
Article
Observational Study on a Large Italian Population with Lipedema: Biochemical and Hormonal Profile, Anatomical and Clinical Evaluation, Self-Reported History
by Laura Patton, Lorenzo Ricolfi, Micaela Bortolon, Guido Gabriele, Pierluigi Zolesio, Erika Cione and Roberto Cannataro
Int. J. Mol. Sci. 2024, 25(3), 1599; https://doi.org/10.3390/ijms25031599 - 27 Jan 2024
Cited by 4 | Viewed by 8259
Abstract
We analyzed the medical condition of 360 women affected by lipedema of the lower limbs in stages 1, 2, and 3. The data were assessed for the whole population and compared between different clinical stages, distinguishing between obese and non-obese patients. The most [...] Read more.
We analyzed the medical condition of 360 women affected by lipedema of the lower limbs in stages 1, 2, and 3. The data were assessed for the whole population and compared between different clinical stages, distinguishing between obese and non-obese patients. The most frequent clinical signs were pain when pinching the skin, subcutaneous nodules, and patellar fat pads. The most frequently painful site of the lower limbs was the medial lower third of the thigh. The pain score obtained on lower limb points increased progressively with the clinical stage. In all points evaluated, the thickness of the subcutaneous tissue increased with the clinical stage. Analyzing the data on the lower medial third of the leg and considering only patients with type 3 lipedema, the difference between stages was statistically significant after correction for age and BMI. We found higher levels of C-reactive protein at more severe clinical stages, and the difference was significant after correction for age and BMI between the stages. Overall, the prevalence of alterations of glucose metabolism was 34%, with a progressive increase in prevalence with the clinical stage. The most frequent comorbidities were vitamin D insufficiency, chronic venous disease, allergies, dyslipidemia, headache, and depression of mood. Interestingly, in comparison with the general population, we found higher prevalence of chronic autoimmune thyroiditis and polycystic ovary syndrome. Finally, the clinical stage and the involvement of the upper limbs or obesity suggest a worse clinical, anthropometric, and endocrine–metabolic profile. Full article
Show Figures

Figure 1

13 pages, 6056 KiB  
Article
Serum Metabolomic Profiling of Patients with Lipedema
by Sally Kempa, Christa Buechler, Bandik Föh, Oliver Felthaus, Lukas Prantl, Ulrich L. Günther, Martina Müller, Stefanie Derer-Petersen, Christian Sina, Franziska Schmelter and Hauke C. Tews
Int. J. Mol. Sci. 2023, 24(24), 17437; https://doi.org/10.3390/ijms242417437 - 13 Dec 2023
Cited by 2 | Viewed by 2285
Abstract
Lipedema is a chronic condition characterized by disproportionate and symmetrical enlargement of adipose tissue, predominantly affecting the lower limbs of women. This study investigated the use of metabolomics in lipedema research, with the objective of identifying complex metabolic disturbances and potential biomarkers for [...] Read more.
Lipedema is a chronic condition characterized by disproportionate and symmetrical enlargement of adipose tissue, predominantly affecting the lower limbs of women. This study investigated the use of metabolomics in lipedema research, with the objective of identifying complex metabolic disturbances and potential biomarkers for early detection, prognosis, and treatment strategies. The study group (n = 25) comprised women diagnosed with lipedema. The controls were 25 lean women and 25 obese females, both matched for age. In the patients with lipedema, there were notable changes in the metabolite parameters. Specifically, lower levels of histidine and phenylalanine were observed, whereas pyruvic acid was elevated compared with the weight controls. The receiver operating characteristic (ROC) curves for the diagnostic accuracy of histidine, phenylalanine, and pyruvic acid concentrations in distinguishing between patients with lipedema and those with obesity but without lipedema revealed good diagnostic ability for all parameters, with pyruvic acid being the most promising (area under the curve (AUC): 0.9992). Subgroup analysis within matched body mass index (BMI) ranges (30.0 to 39.9 kg/m2) further revealed that differences in pyruvic acid, phenylalanine, and histidine levels are likely linked to lipedema pathology rather than BMI variations. Changes in low-density lipoprotein (LDL)-6 TG levels and significant reductions in various LDL-2-carried lipids of patients with lipedema, compared with the lean controls, were observed. However, these lipids were similar between the lipedema patients and the obese controls, suggesting that these alterations are related to adiposity. Metabolomics is a valuable tool for investigating lipedema, offering a comprehensive view of metabolic changes and insights into lipedema’s underlying mechanisms. Full article
Show Figures

Figure 1

12 pages, 4048 KiB  
Article
STAT3 Signalling Drives LDH Up-Regulation and Adiponectin Down-Regulation in Cachectic Adipocytes
by Michele Mannelli, Bianca Bartoloni, Giulia Cantini, Elena Nencioni, Francesca Magherini, Michaela Luconi, Alessandra Modesti, Tania Gamberi and Tania Fiaschi
Int. J. Mol. Sci. 2023, 24(22), 16343; https://doi.org/10.3390/ijms242216343 - 15 Nov 2023
Viewed by 1352
Abstract
Cachexia is a devastating pathology that worsens the quality of life and antineoplastic treatment outcomes of oncologic patients. Herein, we report that the secretome from murine colon carcinoma CT26 induces cachectic features in both murine and human adipocytes that are associated with metabolic [...] Read more.
Cachexia is a devastating pathology that worsens the quality of life and antineoplastic treatment outcomes of oncologic patients. Herein, we report that the secretome from murine colon carcinoma CT26 induces cachectic features in both murine and human adipocytes that are associated with metabolic alterations such as enhanced lactate production and decreased oxygen consumption. The use of oxamate, which inhibits lactate dehydrogenase activity, hinders the effects induced by CT26 secretome. Interestingly, the CT26 secretome elicits an increased level of lactate dehydrogenase and decreased expression of adiponectin. These modifications are driven by the STAT3 signalling cascade since the inhibition of STAT3 with WP1066 impedes the formation of the cachectic condition and the alteration of lactate dehydrogenase and adiponectin levels. Collectively, these findings show that STAT3 is responsible for the altered lactate dehydrogenase and adiponectin levels that, in turn, could participate in the worsening of this pathology and highlight a step forward in the comprehension of the mechanisms underlying the onset of the cachectic condition in adipocytes. Full article
Show Figures

Figure 1

Back to TopTop