ijms-logo

Journal Browser

Journal Browser

Challenges, Opportunities, and Innovation in Functional Nanomaterials and Polymer Nanocomposites

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Nanoscience".

Deadline for manuscript submissions: closed (15 April 2024) | Viewed by 11969

Special Issue Editor


E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

Recently, smart nanoparticles have received a great deal of attention among researchers and academicians due to their unique physical properties and wide applications, including drug delivery, biomimetic devices, contrast agents in magnetic resonance imaging, hyperthermia, cell manipulation, security systems, information storage devices, quantum computing, magnetic sensors and actuators, energy harvesting, catalysis and magnetic separation, spintronic-based devices, electronic devices, lasers, Li-ion batteries, solar cells, bio-imaging, thermal therapy, etc. Prompt technological improvement and miniaturization require immediate developments in materials science to achieve increased performance demands. Polymer nanocomposites have received a great deal of attention regarding the design of a new generation of high-performance composite materials based on smart nanoparticles due to their extraordinarily high synergetic and complementary characteristics between two or more component materials. The characteristics of polymer nanocomposites can be modified by selectively introducing smart nanoparticles with unique physical properties for the desired application. Additionally, the reduced size of smart nanoparticles increases the aspect ratio, which can play a fundamental role in enhancing the interfacial properties in the overall performance of innovative polymer nanocomposite materials for emerging technology.

We invite authors to contribute original research articles or comprehensive review articles covering the most recent progress and new developments in the synthesis of smart nanoparticles; the preparation of polymer nanocomposites; the characterization and application of smart nanoparticles; the physical properties of polymer nanocomposites; and the utilization of smart nanoparticles in the design of advanced polymer nanocomposites for emerging technologies including biomedical, optoelectronics, sensing, diagnostics, food packaging, organic photovoltaics, bioelectronics, electronics, energy storage, automobiles, aerospace engineering, biomedicine, supercapacitors, batteries, water and air purification, microwave absorbers, etc.

This Special Issue aims to cover a broad range of subjects, from smart nanoparticles and polymer nanocomposite synthesis and the study of their fundamental properties to the fabrication and characterization of devices and emerging technologies with smart nanoparticles and polymer integration.

Manuscripts can be submitted in the following formats: full research papers, communications, and reviews.

Dr. Raghvendra Singh Yadav
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • smart nanoparticles
  • synthesis and characterization
  • polymer nanocomposites
  • energy applications
  • biomedical applications
  • environmental applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

9 pages, 2285 KiB  
Communication
Functional Nanocomposites in the Development of Flexible Armor
by Hassan Mahfuz, Vincent Lambert and Floria Clements
Int. J. Mol. Sci. 2023, 24(6), 5067; https://doi.org/10.3390/ijms24065067 - 7 Mar 2023
Cited by 1 | Viewed by 1650
Abstract
The idea of flexible body armor has been around for many years. Initial development included shear thickening fluid (STF) as a backbone polymer to impregnate ballistic fibers such as Kevlar. At the core of the ballistic and spike resistance was the instantaneous rise [...] Read more.
The idea of flexible body armor has been around for many years. Initial development included shear thickening fluid (STF) as a backbone polymer to impregnate ballistic fibers such as Kevlar. At the core of the ballistic and spike resistance was the instantaneous rise in viscosity of STF during impact. Increase in viscosity was due to the hydroclustering of silica nanoparticles dispersed in polyethylene glycol (PEG) through a centrifuge and evaporation process. When STF composite was dry, hydroclustering was not possible due to absence of any fluidity in PEG. However, particles embedded within the polymer, covered the Kevlar fiber and offered some resistance to spike and ballistic penetration. The resistance was meagre and hence, the goal was to improve it further. This was achieved by creating chemical bonds between particles, and by strongly attaching particles to the fiber. PEG was replaced with silane (3-amino propyl trimethoxysilane), and a fixative cross-linker, Glutaraldehyde (Gluta), was added. Silane installed an amine functional group on the silica nanoparticle surface, and Gluta created strong bridges between distant pairs of amine groups. Amide functional groups present in Kevlar also interacted with Gluta and silane to form a secondary amine, allowing silica particles to attach to fiber. A network of amine bonding was also established across the particle-polymer-fiber system. In synthesizing the armor, silica nanoparticles were dispersed in a mixture of silane, ethanol, water, and Gluta, maintaining an appropriate ratio by weight, and using a sonication technique. Ethanol was used as a dispersion fluid and was evaporated later. Several layers of Kevlar fabric were then soaked with the admixture for about 24 h and dried in an oven. Armor composites were tested in a drop tower according to NIJ115 Standard using spikes. Kinetic energy at impact was calculated and normalized with the aerial density of the armor. NIJ tests revealed that normalized energy for 0-layer penetration increased from 10 J-cm2/g (STF composite) to 220 J-cm2/g for the new armor composite, indicating a 22-fold enhancement. SEM and FTIR studies confirmed that this high resistance to spike penetration was due to the formation of stronger C-N, C-H, and C=C-H stretches facilitated by the presence of silane and Gluta. Full article
Show Figures

Figure 1

17 pages, 7361 KiB  
Article
NF-κB Decoy ODN-Loaded Poly(Lactic-co-glycolic Acid) Nanospheres Inhibit Alveolar Ridge Resorption
by Albert chun-shuo Huang, Yuji Ishida, Kai Li, Duantawan Rintanalert, Kasumi Hatano-sato, Shuji Oishi, Jun Hosomichi, Risa Usumi-fujita, Hiroyuki Yamaguchi, Hiroyuki Tsujimoto, Aiko Sasai, Ayaka Ochi, Hajime Watanabe and Takashi Ono
Int. J. Mol. Sci. 2023, 24(4), 3699; https://doi.org/10.3390/ijms24043699 - 12 Feb 2023
Cited by 3 | Viewed by 6968
Abstract
Residual ridge resorption combined with dimensional loss resulting from tooth extraction has a prolonged correlation with early excessive inflammation. Nuclear factor-kappa B (NF-κB) decoy oligodeoxynucleotides (ODNs) are double-stranded DNA sequences capable of downregulating the expression of downstream genes of the NF-κB pathway, which [...] Read more.
Residual ridge resorption combined with dimensional loss resulting from tooth extraction has a prolonged correlation with early excessive inflammation. Nuclear factor-kappa B (NF-κB) decoy oligodeoxynucleotides (ODNs) are double-stranded DNA sequences capable of downregulating the expression of downstream genes of the NF-κB pathway, which is recognized for regulating prototypical proinflammatory signals, physiological bone metabolism, pathologic bone destruction, and bone regeneration. The aim of this study was to investigate the therapeutic effect of NF-κB decoy ODNs on the extraction sockets of Wistar/ST rats when delivered by poly(lactic-co-glycolic acid) (PLGA) nanospheres. Microcomputed tomography and trabecular bone analysis following treatment with NF-κB decoy ODN-loaded PLGA nanospheres (PLGA-NfDs) demonstrated inhibition of vertical alveolar bone loss with increased bone volume, smoother trabecular bone surface, thicker trabecular bone, larger trabecular number and separation, and fewer bone porosities. Histomorphometric and reverse transcription–quantitative polymerase chain reaction analysis revealed reduced tartrate-resistant acid phosphatase-expressing osteoclasts, interleukin-1β, tumor necrosis factor-α, receptor activator of NF-κB ligand, turnover rate, and increased transforming growth factor-β1 immunopositive reactions and relative gene expression. These data demonstrate that local NF-κB decoy ODN transfection via PLGA-NfD can be used to effectively suppress inflammation in a tooth-extraction socket during the healing process, with the potential to accelerate new bone formation. Full article
Show Figures

Figure 1

14 pages, 2554 KiB  
Article
Sono-Enzymatically Embedded Antibacterial Silver-Lignin Nanoparticles on Cork Filter Material for Water Disinfection
by Lizeth Bermeo, Kristina Ivanova, Leonardo Martín Pérez, Eva Forés, Sílvia Pérez-Rafael, Juan C. Casas-Zapata, Jordi Morató and Tzanko Tzanov
Int. J. Mol. Sci. 2022, 23(19), 11679; https://doi.org/10.3390/ijms231911679 - 2 Oct 2022
Cited by 3 | Viewed by 2230
Abstract
Providing clean drinking water is a great challenge worldwide, especially for low-income countries where the access to safe water is limited. During the last decade, new biotechnological approaches have been explored to improve water management. Among them, the use of antimicrobial nanoparticles for [...] Read more.
Providing clean drinking water is a great challenge worldwide, especially for low-income countries where the access to safe water is limited. During the last decade, new biotechnological approaches have been explored to improve water management. Among them, the use of antimicrobial nanoparticles for designing innovative centralized and decentralized (point-of-use) water treatment systems for microbial decontamination has received considerable attention. Herein, antimicrobial lignin capped silver nanoparticles (AgLNP) were embedded on residual cork pieces using high-intensity ultrasound coupled with laccase-mediated grafting to obtain biofunctionalized nanomaterial. The developed AgLNP-coated cork proved to be highly efficient to drastically reduce the number of viable Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus in liquid medium. Additionally, the coated-cork was characterized using FTIR-ATR spectroscopy and SEM imaging, and further used as a filter bed in a point-of-use device for water disinfection. The constructed water filtering system significantly reduced the amount of viable E. coli and resistant Bacillus cereus spores from filtered water operating at increasing residence times of 1, 4, 6, 16, 24, and 48 h. Therefore, the presented results prove that the obtained cork-based antimicrobial nanocomposite material could be used as a filtering medium for the development of water filtration system to control pathogen dissemination. Full article
Show Figures

Figure 1

Back to TopTop