Synthesis and Innovative Biological Activity of Boron-Containing Compounds

A special issue of Inorganics (ISSN 2304-6740). This special issue belongs to the section "Bioinorganic Chemistry".

Deadline for manuscript submissions: closed (31 July 2023) | Viewed by 23281

Special Issue Editors


E-Mail Website
Guest Editor
Laboratorio de Neurofisiología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Mexico City 11340, Mexico
Interests: boron; medicinal chemistry; drug design; GPCR; human physiology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
Interests: chemical biology; zebrafish; retinoic acid signaling; computational modeling; medicinal chemistry; molecular imaging
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The applications of boron-containing compounds (BCCs) in the biomedical field are intensifying. The identification of new BCCs from nature or via synthesis increases the feasibility of using BCCs to create drugs with comparative advantages to those of drugs available today. A deeper understanding of the relevance of boron atoms in biomolecules is emerging, while the details of innovative synthesis, chemical characterization, elucidation of mechanism of action, as well as the interactions of known targets for prevention, diagnoses, or therapy purposes, are attractive topics in the medicinal chemistry of BCCs.

Therefore, we invite you to share your novel ideas and achievements, including innovative synthesis of potential bioactive boron-containing compounds, computational chemistry, biophysical characterization, or any type of biological effect of BCCs with potential application to prevent, diagnose, or treat diseases by contributing original papers and reviews to this Special Issue of Inorganics.

Dr. Marvin Antonio Soriano-Ursúa
Prof. Dr. Bhaskar C. Das
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Inorganics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • boron
  • organoboron compounds
  • synthesis
  • biochemistry
  • analytical chemistry
  • molecular imaging
  • boron-based materials
  • boron-based pharmaceuticals
  • boron-based diets
  • chemical biology
  • molecular modeling
  • boron-based biopolymers

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

3 pages, 197 KiB  
Editorial
Boron Applications in Prevention, Diagnosis and Therapy for High Global Burden Diseases
by Marvin A. Soriano-Ursúa
Inorganics 2023, 11(9), 358; https://doi.org/10.3390/inorganics11090358 - 30 Aug 2023
Viewed by 1363
Abstract
The role of boron-containing compounds (BCCs) in medicine is growing [...] Full article

Research

Jump to: Editorial, Review

15 pages, 2306 KiB  
Article
Oxidative, Genotoxic and Cytotoxic Damage Potential of Novel Borenium and Borinium Compounds
by Sibel Bayil Oguzkan, Hasan Turkez, Halil Ibrahim Ugras, Arzu Tatar and Adil Mardinoglu
Inorganics 2023, 11(8), 324; https://doi.org/10.3390/inorganics11080324 - 31 Jul 2023
Cited by 1 | Viewed by 1568
Abstract
In this study, the biological properties of novel borenium and borinium compounds in terms of their oxidative, genotoxic, and cytotoxic effects were assessed on cultured human peripheral blood cells, as well as several types of cancer cells. Our results revealed that the borinium [...] Read more.
In this study, the biological properties of novel borenium and borinium compounds in terms of their oxidative, genotoxic, and cytotoxic effects were assessed on cultured human peripheral blood cells, as well as several types of cancer cells. Our results revealed that the borinium compounds yielded the best results in terms of supporting total antioxidant capacity (TAC). In fact, borenium 1, borenium 2, borenium 3, borinium 4, and borinium 5 compounds elevated TAC levels of cultured human blood cells at rates of 42.8%, 101.5%, 69.8%, 33.3%, and 49.2%, respectively. There were no statistically significant differences (p > 0.05) between the negative control and the groups treated with all borinium and borenium concentrations from the micronucleus (MN) and chromosome aberration (CA) assays, demonstrating the non-genotoxic effects. Moreover, borenium 1 (60.7% and 50.7%), borenium 2 (70.4% and 57.2%), borenium 3 (53.1% and 45.2%), borinium 4 (55.1% and 48.1%), and borinium 5 (51.0% and 36.1%) minimized the mitomycin C(MMC)-induced genotoxic damages at different rates as determined using CA and MN assays, respectively. Again, it was found that the borinium compounds exhibited higher cytotoxic activity on cancer cells when compared to borenium compounds. Consequently, in light of our in vitro findings, it was suggested that the novel borinium and borenium compounds could be used safely in pharmacology, cosmetics, and various medical fields due to their antioxidant and non-genotoxic features, as well as their cytotoxicity potential on cancer cells. Full article
Show Figures

Figure 1

13 pages, 1153 KiB  
Article
Redox Targets for Phosphine–Boranes
by Yonatan Morocz, Rachel E. Greben and Leonard A. Levin
Inorganics 2023, 11(7), 310; https://doi.org/10.3390/inorganics11070310 - 22 Jul 2023
Cited by 1 | Viewed by 1488
Abstract
Understanding the complex mechanisms underlying redox-mediated biological processes is a fundamental pillar of cellular biology. We describe the identification and quantification of disulfide formation and reduction in response to phosphine–borane complexes. We illustrate the specific cysteine reduction effects of the novel phosphine–borane complex [...] Read more.
Understanding the complex mechanisms underlying redox-mediated biological processes is a fundamental pillar of cellular biology. We describe the identification and quantification of disulfide formation and reduction in response to phosphine–borane complexes. We illustrate the specific cysteine reduction effects of the novel phosphine–borane complex bis(3-propionic acid methyl ester) phenylphosphine–borane complex (PB1) on cultured 661W cells. A total of 1073 unique protein fragments from 628 unique proteins were identified and quantified, of which 13 were found to be statistically significant in comparison to control cells. Among the 13 identified proteins were Notch1, HDAC1, UBA1, USP7, and subunits L4 and L7 of the 60S ribosomal subunit, all of which are involved in redox or cell death-associated pathways. Leveraging the ability of tandem mass tagging mass spectrometry to provide quantitative data in an exploratory manner provides insight into the effect PB1 and other phosphine–borane compounds may have on the cysteine redoxome. Full article
Show Figures

Figure 1

14 pages, 3642 KiB  
Article
Novel BODIPY Conjugates with Myrtenol: Design, Spectral Characteristics, and Possibilities for Practical Application
by Galina B. Guseva, Elena V. Antina, Mikhail B. Berezin, Liliya E. Nikitina, Ilmir R. Gilfanov, Roman S. Pavelyev, Svetlana A. Lisovskaya, Larisa L. Frolova, Olga V. Ostolopovskaya, Ilfat Z. Rakhmatullin, Vladimir V. Klochkov, Elena Y. Trizna and Airat R. Kayumov
Inorganics 2023, 11(6), 241; https://doi.org/10.3390/inorganics11060241 - 3 Jun 2023
Cited by 4 | Viewed by 1613
Abstract
The synthesis of new fluorescent probes, based on biocompatible luminophors and exhibiting various specificities, is intensively developed worldwide. Many luminophors contain a hydrophobic group that limits their application for cell staining under vital conditions. Herein, we report the synthesis of two BODIPY molecules— [...] Read more.
The synthesis of new fluorescent probes, based on biocompatible luminophors and exhibiting various specificities, is intensively developed worldwide. Many luminophors contain a hydrophobic group that limits their application for cell staining under vital conditions. Herein, we report the synthesis of two BODIPY molecules—BF2-meso-(4-butan/pentanamido-N-(((1S,5R)-6,6-dimethylbicyclo [3.1.1]hept-2-en-2-yl)methyl)-N,N-dimethylpropan-1-aminium)-3,3′,5,5′-tetramethyl-2,2′-dipyrromethene bromides—designed as 10, 11 with a spacer of either four or three CH2 groups in length, respectively. These molecules present conjugates of BODIPY luminophors with (+)-myrtenol via a quaternary ammonium group. Both terpene-BODIPY conjugates demonstrated high fluorescence efficiency in various solvents such as OctOH, DMSO and water, and were characterized by their stability at pH 1.65–9.18. The fusion of the myrtenol, a monocyclic terpene, to the BODIPY fluorophore in the meso-substituent facilitated their penetration into the filamentous fungi Fusarium solani, while impairing the binding of the latter with S. aureus, K. pneumoniae and P. aeruginosa. The additional quaternary ammonium group between the myrtenol and fluorophore moieties restored the bacterial cell-staining while it did not affect the staining of fungi. Finally, the BODIPY conjugate 11 was able to stain both Gram-positive and Gram-negative bacteria by its interaction with their cell wall (or the membrane), as well as penetrating into filamentous fungi F. solani and staining their mitochondria. Full article
Show Figures

Figure 1

13 pages, 2797 KiB  
Article
Reverse Screening of Boronic Acid Derivatives: Analysis of Potential Antiproliferative Effects on a Triple-Negative Breast Cancer Model In Vitro
by Miguel Ortiz-Flores, Marcos González-Pérez, Andrés Portilla, Marvin A. Soriano-Ursúa, Javier Pérez-Durán, Araceli Montoya-Estrada, Guillermo Ceballos and Nayelli Nájera
Inorganics 2023, 11(4), 165; https://doi.org/10.3390/inorganics11040165 - 14 Apr 2023
Cited by 2 | Viewed by 2205
Abstract
It has been demonstrated that different organoboron compounds interact with some well-known molecular targets, including serine proteases, transcription factors, receptors, and other important molecules. Several approaches to finding the possible beneficial effects of boronic compounds include various in silico tools. This work aimed [...] Read more.
It has been demonstrated that different organoboron compounds interact with some well-known molecular targets, including serine proteases, transcription factors, receptors, and other important molecules. Several approaches to finding the possible beneficial effects of boronic compounds include various in silico tools. This work aimed to find the most probable targets for five aromatic boronic acid derivatives. In silico servers, SuperPred, PASS-Targets, and Polypharmacology browser 2 (PPB2) suggested that the analyzed compounds have anticancer properties. Based on these results, the antiproliferative effect was evaluated using an in vitro model of triple-negative breast cancer (4T1 cells in culture). It was demonstrated that phenanthren-9-yl boronic acid and 6-hydroxynaphthalen-2-yl boronic acid have cytotoxic properties at sub-micromolar concentrations. In conclusion, using in silico approaches and in vitro analysis, we found two boronic acid derivatives with potential anticancer activity. Full article
Show Figures

Figure 1

14 pages, 9132 KiB  
Article
Diester Chlorogenoborate Complex: A New Naturally Occurring Boron-Containing Compound
by Andrei Biţă, Ion Romulus Scorei, Nagendra Rangavajla, Ludovic Everard Bejenaru, Gabriela Rău, Cornelia Bejenaru, Maria Viorica Ciocîlteu, Laura Dincă, Johny Neamţu, Andrei Bunaciu, Otilia Constantina Rogoveanu, Mihai Ioan Pop and George Dan Mogoşanu
Inorganics 2023, 11(3), 112; https://doi.org/10.3390/inorganics11030112 - 9 Mar 2023
Cited by 9 | Viewed by 1947
Abstract
The natural compounds of boron have many applications, primarily as a dietary supplement. The research is based on the discovery that the diester chlorogenoborate complex can be detected and quantified from green coffee beans. The study reports that such a diester molecule can [...] Read more.
The natural compounds of boron have many applications, primarily as a dietary supplement. The research is based on the discovery that the diester chlorogenoborate complex can be detected and quantified from green coffee beans. The study reports that such a diester molecule can also be synthesized in a stable form via the direct reaction of boric acid and chlorogenic acid in a mixture of acetonitrile–water (1:1, v/v) and left to evaporate over a period of 48 h at room temperature, resulting in a spirocyclic form (diester complex). The diester complex, with its molecular structure and digestibility attributes, has potential application as a prebiotic in gut health and oral health, and as a micronutrient essential for microbiota in humans and animals. Full article
Show Figures

Figure 1

25 pages, 7439 KiB  
Article
Synthesis, In Silico, In Vivo, and Ex Vivo Evaluation of a Boron-Containing Quinolinate Derivative with Presumptive Action on mGluRs
by Mario Emilio Cuevas-Galindo, Brenda Anaid Rubio-Velázquez, Rosa Adriana Jarillo-Luna, Itzia I. Padilla-Martínez, Marvin A. Soriano-Ursúa and José G. Trujillo-Ferrara
Inorganics 2023, 11(3), 94; https://doi.org/10.3390/inorganics11030094 - 26 Feb 2023
Cited by 2 | Viewed by 1684
Abstract
In the brain, canonical excitatory neurotransmission is mediated by L-glutamate and its ionotropic (iGluR) and metabotropic (mGluR) receptors. The wide diversity of these often limits the development of glutamatergic drugs. This is due to the arduousness of achieving selectivity with specific ligands. [...] Read more.
In the brain, canonical excitatory neurotransmission is mediated by L-glutamate and its ionotropic (iGluR) and metabotropic (mGluR) receptors. The wide diversity of these often limits the development of glutamatergic drugs. This is due to the arduousness of achieving selectivity with specific ligands. In the present article, encouraged by reports of bioactive organoboron compounds, a diphenylboroxazolidone derived from quinolinate (BZQuin) was evaluated. BZQuin was synthesized with a yield of 87%. Its LD50 was 174 mg/kg in male CD-1 mice, as estimated by a modified Lorke’s method. BZQuin exerted a reduced ability to cause seizures when compared against its precursor, quinolinate. The latter suggested that it does not directly stimulate the ionotropic NMDA receptors or other ionic channels. The observation that the antiglutamatergic drugs riluzole and memantine displaced the BZQuin effect left the mGluRs as their possible targets. This is in line with results from molecular-docking simulations. During these simulations, BZQuin bound only to orthosteric sites on mGluR1, mGluR2, and mGluR7, with higher affinity than quinolinate. The survival of the neurons of mice previously administered with BZQuin or quinolinate was quantified in four neuroanatomical structures of the brain. The BZQuin effect was more appreciable in brain regions with a high expression of the previously mentioned mGluRs, while both antiglutamatergic drugs exerted a neuroprotective effect against it. Together, these results suggest that BZQuin exerts a positive influence on glutamatergic neurotransmission while selectively interacting with certain mGluRs. Full article
Show Figures

Graphical abstract

11 pages, 1564 KiB  
Article
Synthesis of Novel Multifunctional bora-Ibuprofen Derivatives
by Randika T. Abeysinghe, Alexis C. Ravenscroft, Steven W. Knowlden, Novruz G. Akhmedov, Brian S. Dolinar and Brian V. Popp
Inorganics 2023, 11(2), 70; https://doi.org/10.3390/inorganics11020070 - 2 Feb 2023
Cited by 4 | Viewed by 3294
Abstract
A unique class of β-boron-functionalized non-steroidal anti-inflammatory compound (pinB-NSAID) was previously synthesized via copper-catalyzed 1,2-difunctionalization of the respective vinyl arene with CO2 and B2pin2 reagents. Here, pinacolylboron-functionalized ibuprofen (pinB-ibuprofen) was used as a model substrate to develop the conditions [...] Read more.
A unique class of β-boron-functionalized non-steroidal anti-inflammatory compound (pinB-NSAID) was previously synthesized via copper-catalyzed 1,2-difunctionalization of the respective vinyl arene with CO2 and B2pin2 reagents. Here, pinacolylboron-functionalized ibuprofen (pinB-ibuprofen) was used as a model substrate to develop the conditions for pinacol deprotection and subsequent boron functionalization. Initial pinacol-boronic ester deprotection was achieved by transesterification with diethanolamine (DEA) from the boralactonate organic salt. The resulting DEA boronate adopts a spirocyclic boralactonate structure rather than a diazaborocane–DABO boronate structure. The subsequent acid-mediated hydrolysis of DEA and transesterification/transamination provided a diverse scope of new boron-containing ibuprofen derivatives. Full article
Show Figures

Figure 1

Review

Jump to: Editorial, Research

21 pages, 1840 KiB  
Review
Effects of Boron-Containing Compounds on Liposoluble Hormone Functions
by Elizabeth Estevez-Fregoso, Ahmet Kilic, Diana Rodríguez-Vera, Luis E. Nicanor-Juárez, C. Elena M. Romero-Rizo, Eunice D. Farfán-García and Marvin A. Soriano-Ursúa
Inorganics 2023, 11(2), 84; https://doi.org/10.3390/inorganics11020084 - 17 Feb 2023
Cited by 12 | Viewed by 6112
Abstract
Boron-containing compounds (BCC), particularly boronic acids and derivatives, are being increasingly tested as diagnostic and therapeutic agents. Some effects of BCC involve phenomena linked to the action of steroid or thyroid hormones; among these, are the effects on muscle mass or basal metabolism. [...] Read more.
Boron-containing compounds (BCC), particularly boronic acids and derivatives, are being increasingly tested as diagnostic and therapeutic agents. Some effects of BCC involve phenomena linked to the action of steroid or thyroid hormones; among these, are the effects on muscle mass or basal metabolism. Additionally, some toxicology reports on mammals, including humans, sound an alert concerning damage to several systems, among which are the negative effects on the induction of male infertility. Systemic and local mechanisms to explain changes in metabolism and impaired fertility were collected and presented. Then, we presented the putative pharmacodynamic and pharmacokinetic mechanisms involved and demonstrated in these events. In addition, it is proposed that there are adducts of some oxygenated BCC with cis-diols in fructose, an essential source of energy for sperm–cell motility, an uncoupling of sex hormone-binding globulin (SHBG) and its ligands, and the modulation of the DNA synthetic rate. These effects share the reactivity of boron-containing compounds on the cis-diols of key molecules. Moreover, data reporting no DNA damage after BCC administration are included. Further studies are required to support the clear role of BCC through these events to disrupt metabolism or fertility in mammals. If such phenomena are confirmed and elucidated, an advance could be useful to design strategies for avoiding BCC toxicity after BCC administration, and possibly for designing metabolism regulators and contraceptive drugs, among other purposes. Boronic derivatives and carboranes have been proposed and studied in this field. Full article
Show Figures

Figure 1

Back to TopTop