Chemical Toxicology and Insecticide Resistance on Insect Pests

A special issue of Insects (ISSN 2075-4450). This special issue belongs to the section "Insect Pest and Vector Management".

Deadline for manuscript submissions: 30 November 2024 | Viewed by 13009

Special Issue Editors


E-Mail Website
Guest Editor
Laboratory of Agricultural Entomology and Zoology, Department of Agriculture, University of the Peloponnese, Kalamata Campus, 24100 Antikalamos, Greece
Interests: integrated pest management of insect; biological control; toxicology; insecticide resistance
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Laboratory of Agricultural Entomology and Zoology, Department of Agriculture, University of the Peloponnese, Kalamata Campus, 24100 Antikalamos, Greece
Interests: integrated pest management of insect; biological control; toxicology; insect morphology; insect biology; insect ecology

Special Issue Information

Dear Colleagues,

Insect pests can cause significant quality and yield losses to crops and can potentially threaten nutrition, food safety, and human health. Insecticide application is a crucial factor in managing agricultural pest and vector populations that transmit diseases. A consequence of the repeated use of pesticides is the development of resistance to many pests, adverse effects on the environment, and the reduction in populations of natural enemies followed by the resurgence or secondary pest outbreaks. The scope of this Special Issue includes but is not limited to (i) insecticide resistance of pesticides and its management and (ii) the toxic effects of chemicals and their impact on the insect population and/or community level. We are particularly interested in manuscripts that include research articles, review articles, short communications, and opinion articles related to the extended topic of “Chemical Toxicology and Insecticide Resistance on Insect Pests”.

Dr. Panagiotis J. Skouras
Prof. Dr. George J. Stathas
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • insecticides
  • toxicology
  • insecticide resistance management
  • resistance mechanisms
  • integrated pest management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 2567 KiB  
Article
Toxicity and Sublethal Effect of Chlorantraniliprole on Multiple Generations of Aedes aegypti L. (Diptera: Culicidae)
by Nimra Batool, Muhammad Abubakar, Ahmed Noureldeen, Muhammad Nadir Naqqash, Akram Alghamdi, Zamzam M. Al Dhafar, Fadi Baakdah and Raimondas Mozūratis
Insects 2024, 15(11), 851; https://doi.org/10.3390/insects15110851 - 30 Oct 2024
Viewed by 609
Abstract
Due to the quick development of insecticide resistance, it is crucial to optimize management programs by understanding the sublethal effects of effective insecticides like chlorantraniliprole on Aedes aegypti L. populations. Using age-stage and two-sex life tables, we investigated the sublethal impacts of chlorantraniliprole [...] Read more.
Due to the quick development of insecticide resistance, it is crucial to optimize management programs by understanding the sublethal effects of effective insecticides like chlorantraniliprole on Aedes aegypti L. populations. Using age-stage and two-sex life tables, we investigated the sublethal impacts of chlorantraniliprole on Ae. aegypti. Larval duration in the progeny of exposed parents was reduced by 0.33–0.42 days, whereas, the longevity of male and female adults was decreased by 1.43–3.05 days. Similarly, the egg-laying capacity of F1 and F2 progeny of the exposed parents was significantly reduced from 27.3% to 41.2%. The mean generation time (T) increased up to 11.8% in exposed populations, and the net reproduction rate (Ro) decreased by 51.50–55.60%. After 24 h of chlorantraniliprole treatment, there was a significant increase in cytochrome P450 activity. Contrarily, the activity of glutathione S-transferase (GST) initially declined but started increasing after 48 h of treatment. This research highlights the importance of chlorantraniliprole in mosquito management, as well as the importance of considering sublethal effects when developing strategies to handle them. Having a thorough understanding of the harmful effects of insecticides on mosquito populations can greatly enhance the effectiveness of insecticide-based interventions, while also minimizing the risk of pest resurgence. Full article
(This article belongs to the Special Issue Chemical Toxicology and Insecticide Resistance on Insect Pests)
Show Figures

Figure 1

16 pages, 3272 KiB  
Article
RNAseq-Based Carboxylesterase Nl-EST1 Gene Expression Plasticity Identification and Its Potential Involvement in Fenobucarb Resistance in the Brown Planthopper Nilaparvata lugens
by Murtaza Khan, Changhee Han, Nakjung Choi and Juil Kim
Insects 2024, 15(10), 743; https://doi.org/10.3390/insects15100743 - 26 Sep 2024
Viewed by 604
Abstract
Carbamate insecticides have been used for over four decades to control brown planthopper, Nilaparvata lugens, but resistance has been reported in many countries, including the Republic of Korea. The bioassay results on resistance to fenobucarb showed that the LC50 values were [...] Read more.
Carbamate insecticides have been used for over four decades to control brown planthopper, Nilaparvata lugens, but resistance has been reported in many countries, including the Republic of Korea. The bioassay results on resistance to fenobucarb showed that the LC50 values were 3.08 for the susceptible strain, 10.06 for the 2015 strain, and 73.98 mg/L for the 2019 strain. Compared to the susceptible strain, the 2015 and 2019 strains exhibited resistance levels 3.27 and 24.02 times higher, respectively. To elucidate the reason for the varying levels of resistance to fenobucarb in these strains, mutations in the acetylcholinesterase 1 (ACE1) gene, the target gene of carbamate, were investigated, but no previously reported mutations were confirmed. Through RNA-seq analysis focusing on the expression of detoxification enzyme genes as an alternative resistance mechanism, it was found that the carboxylesterase gene Nl-EST1 was overexpressed 2.4 times in the 2015 strain and 4.7 times in the 2019 strain compared to the susceptible strain. This indicates a strong correlation between the level of resistance development in each strain and the expression level of Nl-EST1. Previously, Nl-EST1 was reported in an organophosphorus insecticide-resistant strain of Sri Lanka 2000. Thus, Nl-EST1 is crucial for developing resistance to organophosphorus and carbamate insecticides. Resistance-related genes such as Nl-EST1 could serve as expression markers for resistance diagnosis, and can apply to integrated resistance management of N. lugens. Full article
(This article belongs to the Special Issue Chemical Toxicology and Insecticide Resistance on Insect Pests)
Show Figures

Graphical abstract

13 pages, 1008 KiB  
Article
Repellent Effects of Coconut Fatty Acid Methyl Esters and Their Blends with Bioactive Volatiles on Winged Myzus persicae (Sulzer) Aphids (Hemiptera: Aphididae)
by Félix Martín, Pedro Guirao and María Jesús Pascual-Villalobos
Insects 2024, 15(9), 731; https://doi.org/10.3390/insects15090731 - 23 Sep 2024
Viewed by 708
Abstract
Myzus persicae (Sulzer) (Hemiptera: Aphididae) is one of the most important aphid crop pests, due to its direct damage and its ability to transmit viral diseases in crops. The objective is to test whether spraying nanoemulsions of botanical products repels winged individuals of [...] Read more.
Myzus persicae (Sulzer) (Hemiptera: Aphididae) is one of the most important aphid crop pests, due to its direct damage and its ability to transmit viral diseases in crops. The objective is to test whether spraying nanoemulsions of botanical products repels winged individuals of M. persicae in a bioassay in culture chambers. The bioactive volatiles were applied on pepper plants at a dose of 0.2% alone or at 0.1% of each component in blends. A treated plant and a control plant were placed at each side of an entomological cage inside a growth chamber. The winged individuals were released between the plants, in a black-painted Petri dish suspended by wires in the upper half of the cage. The most repellent products were farnesol (repellency index, RI = 40.24%), (E)-anethole (RI = 30.85%) and coconut fatty acid methyl ester (coconut FAME) (RI = 28.93%), alone or in the following blends: farnesol + (E)-anethole + distilled lemon oil (RI = 36.55%) or (E)-anethole + distilled lemon oil + coconut FAME (RI = 30.63%). The observed effect of coconut FAME on aphids is the first report of this product having a repellent effect on a crop pest. Repellent substances for viral disease vectors should be further investigated to develop new strategies for plant protection. Full article
(This article belongs to the Special Issue Chemical Toxicology and Insecticide Resistance on Insect Pests)
Show Figures

Figure 1

15 pages, 975 KiB  
Article
Monitoring and Detection of Insecticide Resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae): Evidence for Field-Evolved Resistance in Egypt
by Moataz A. M. Moustafa, Nourhan A. El-Said, Nawal AbdulAziz Alfuhaid, Fatma M. A. Abo-Elinin, Radwa M. B. Mohamed and Ahmed A. A. Aioub
Insects 2024, 15(9), 705; https://doi.org/10.3390/insects15090705 - 16 Sep 2024
Cited by 1 | Viewed by 1084
Abstract
Spodoptera frugiperda (J.E. Smith) (Noctuidae: Lepidoptera) is a notable insect pest that invades major cereal crops, causing significant damage and loss. Resistances of 2nd instar larvae of two Egyptian field populations of S. frugiperda, collected from the Fayoum and Giza governments, were [...] Read more.
Spodoptera frugiperda (J.E. Smith) (Noctuidae: Lepidoptera) is a notable insect pest that invades major cereal crops, causing significant damage and loss. Resistances of 2nd instar larvae of two Egyptian field populations of S. frugiperda, collected from the Fayoum and Giza governments, were measured against eight insecticides, including traditional insecticides (profenofos and cypermethrin), bio-insecticides (emamectin benzoate, spinosad, and Bacillus thuringiensis), and insect growth regulators (IGRs) (lufenuron, diflubenzuron, and methoxyfenozide). In addition, the synergistic effects of three synergists (Piperonyl butoxide (PBO), diethyl maleate (DEM), and triphenyl phosphate (TPP) were assessed, and the activities of detoxification enzymes (acetylcholine esterase (AChE), cytochrome P-450 (CYP-450), carboxylesterase (CarE), and glutathione-s-transferase (GST) were also determined. Resistance surveillance revealed that the Fayoum field population showed moderate resistance to cypermethrin (RR = 5.75-fold), followed by spinosad (RR = 2.62-fold), and lufenuron (2.01-fold). On the other hand, the Giza population exhibited significant resistance to cypermethrin only (RR = 3.65-fold). Our results revealed that emamectin benzoate was the most effective insecticide, with an LC50 value of 0.003 mg/L for the Fayoum population and 0.001 mg/L for the Giza population, compared to the susceptible strain (0.005 mg/L). Among the biological insecticides, Bacillus thuringiensis was the least toxic insecticide of all the tested strains. Synergism assays indicated that DEM and TPP had the most synergistic effect on spinosad (SR = 8.00-fold for both), followed by PBO (SR = 5.71-fold) for the Fayoum population, compared with spinosad alone. The assay of detoxification enzymes showed that GST activity significantly (p < 0.05) increased in the two field strains compared to the susceptible strain. However, no significant changes were observed among the tested strains in CYP-450, CarE, or AChE. The findings of this study provide substantial insights into tracking and managing the development of insecticide resistance in S. frugiperda in Egypt. Full article
(This article belongs to the Special Issue Chemical Toxicology and Insecticide Resistance on Insect Pests)
Show Figures

Graphical abstract

15 pages, 1162 KiB  
Article
The Effects of Natural Insecticides on the Green Peach Aphid Myzus persicae (Sulzer) and Its Natural Enemies Propylea quatuordecimpunctata (L.) and Aphidius colemani Viereck
by Francesco Lami, Giovanni Burgio, Serena Magagnoli, Laura Depalo, Alberto Lanzoni, Elettra Frassineti, Ilaria Marotti, Mattia Alpi, Dario Mercatante, Maria Teresa Rodriguez-Estrada, Giovanni Dinelli and Antonio Masetti
Insects 2024, 15(7), 556; https://doi.org/10.3390/insects15070556 - 22 Jul 2024
Viewed by 1092
Abstract
Botanical insecticides and soaps are frequently proposed as environmentally safer alternatives to synthetic insecticides. However, the efficacy and selectivity of these products are often only partially supported by empirical evidence. Here, we tested the effectiveness of five botanical insecticides, belonging to different categories, [...] Read more.
Botanical insecticides and soaps are frequently proposed as environmentally safer alternatives to synthetic insecticides. However, the efficacy and selectivity of these products are often only partially supported by empirical evidence. Here, we tested the effectiveness of five botanical insecticides, belonging to different categories, on the green peach aphid Myzus persicae (Sulzer) and their selectivity towards two natural enemies, the ladybird beetle Propylea quatuordecimpunctata (L.) and the parasitoid Aphidius colemani (Dalman). White thyme essential oil (EO), sweet orange EO, crude garlic extract and Marseille soap were tested and compared with a pyrethrin-based commercial product. Both direct spray assays and residual contact assays on treated cabbage leaf disks were carried out. The tested products had low efficacy against aphids when compared to pyrethrins but were in general less detrimental to ladybird beetle larvae, meaning that if applied against other pests, they have a lower chance of harming this agent of aphid biocontrol. Some of the products (soap, orange EO) did, however, show direct exposure toxicity toward ladybird larvae, and thyme EO had extensive phytotoxic effects on cabbage leaves, possibly indirectly leading to higher mortality in ladybird adults. These results underline the necessity for case-by-case evaluations of botanical insecticides. Full article
(This article belongs to the Special Issue Chemical Toxicology and Insecticide Resistance on Insect Pests)
Show Figures

Figure 1

13 pages, 4197 KiB  
Article
Insecticidal Activity of Allium sativum Essential Oil-Based Nanoemulsion against Spodoptera littoralis
by Gaetano Giuliano, Orlando Campolo, Giuseppe Forte, Alberto Urbaneja, Meritxell Pérez-Hedo, Ilaria Latella, Vincenzo Palmeri and Giulia Giunti
Insects 2024, 15(7), 476; https://doi.org/10.3390/insects15070476 - 26 Jun 2024
Viewed by 2509
Abstract
Spodoptera littoralis, commonly known as the Egyptian or African cotton leafworm, is a significant agricultural threat. It is widely distributed in Africa, Mediterranean Europe, and Middle Eastern countries. This polyphagous pest infests numerous crop plants across 44 families, including cotton, soybeans, alfalfa, [...] Read more.
Spodoptera littoralis, commonly known as the Egyptian or African cotton leafworm, is a significant agricultural threat. It is widely distributed in Africa, Mediterranean Europe, and Middle Eastern countries. This polyphagous pest infests numerous crop plants across 44 families, including cotton, soybeans, alfalfa, sweet potato, pepper, eggplant, tomato, maize, lettuce, strawberry, wheat, and hibiscus. The damage caused by S. littoralis on different plant organs, such as young leaves, shoots, stalks, bolls, buds, and fruits, often determines substantial product losses. Current control strategies predominantly rely on synthetic insecticides, which, despite their efficacy, have notable drawbacks, including insecticide resistance, environmental contamination, consumer concerns, and adverse effects on non-target organisms and beneficial insects. In response to these challenges, in this study, we developed and evaluated a garlic EO-based nanoemulsion with a high EO concentration (15%) and low surfactant content to mitigate the possible negative impact on plants and to enhance efficacy against S. littoralis larvae. Laboratory bioassays demonstrated promising larvicidal activity and reduced larval feeding, although some phytotoxicity symptoms were observed. This study underscores the potential of botanical insecticides as sustainable alternatives to synthetic chemicals, emphasizing the importance of balancing efficacy with environmental and ecological considerations in pest management strategies. Full article
(This article belongs to the Special Issue Chemical Toxicology and Insecticide Resistance on Insect Pests)
Show Figures

Figure 1

16 pages, 1334 KiB  
Article
Topical Toxicity and Repellency Profiles of 17 Essential Oil Components against Insecticide-Resistant and Susceptible Strains of Adult Musca domestica (Diptera: Muscidae)
by Yuexun Tian, Jerome A. Hogsette, Edmund J. Norris and Xing Ping Hu
Insects 2024, 15(6), 384; https://doi.org/10.3390/insects15060384 - 24 May 2024
Cited by 2 | Viewed by 1348
Abstract
The house fly is a significant pest in agriculture and human health that is increasingly difficult to manage due to multiple limitations including resistance development. To explore alternative pesticides, the topical toxicity and repellency profiles of 17 essential oil components (EOCs) were evaluated [...] Read more.
The house fly is a significant pest in agriculture and human health that is increasingly difficult to manage due to multiple limitations including resistance development. To explore alternative pesticides, the topical toxicity and repellency profiles of 17 essential oil components (EOCs) were evaluated against a resistant and a susceptible strain of house fly, Musca domestica L., using topical application and Y-tube olfactometers, respectively. Six of the most toxic EOCs based on the LD50 were further investigated against a susceptible strain of house fly. Thymol, (+)-pulegone, eugenol, and carvacrol were always the top four most toxic chemicals tested against the resistant house fly strain. Little to no resistance was observed to the top six EOCs based on the comparison of the results between resistant and susceptible house fly strains. P-Cymene, citronellic acid, R-(+)-limonene, linalool, γ-terpinene, estragole, and eugenol were repellent to adult house flies at certain concentrations while (-)-carvone and thymol were attractive to adult house flies. This screening of a wide variety of individual EOCs provides a stronger foundation of information for further research. This should encourage further investigation into the topical toxicity and repellency in field studies, which will provide more insight into the performance of biopesticides for house fly management and potential commercialization. Full article
(This article belongs to the Special Issue Chemical Toxicology and Insecticide Resistance on Insect Pests)
Show Figures

Figure 1

12 pages, 1780 KiB  
Article
Evaluation of Cotton Fleahopper (Pseudatomoscelis seriatus (Reuter)) Feeding on Mpp51Aa2-Traited Cotton Utilizing Electrical Penetration Graph (EPG) Waveforms
by Brady P. Arthur, Charles P.-C. Suh, Benjamin M. McKnight, Megha N. Parajulee, Fei Yang, Thomas M. Chappell and David L. Kerns
Insects 2024, 15(5), 316; https://doi.org/10.3390/insects15050316 - 29 Apr 2024
Viewed by 1938
Abstract
Prior to the recent implementation of the Mpp51Aa2 pesticidal protein (ThryvOn), transgenic cotton cultivars have historically offered no control of the cotton fleahopper (Pseudatomocelis seriatus (Reuter)). To evaluate the feeding behavior of cotton fleahoppers on ThryvOn cotton, electropenetrography (EPG) using a Giga-8 [...] Read more.
Prior to the recent implementation of the Mpp51Aa2 pesticidal protein (ThryvOn), transgenic cotton cultivars have historically offered no control of the cotton fleahopper (Pseudatomocelis seriatus (Reuter)). To evaluate the feeding behavior of cotton fleahoppers on ThryvOn cotton, electropenetrography (EPG) using a Giga-8 DC instrument was used to monitor the probing activity of fourth- and fifth-instar cotton fleahopper nymphs on both ThryvOn and non-ThryvOn cotton squares. Nymphs were individually placed on an excised cotton square for 8 h of EPG recording, after which resulting waveforms were classified as non-probing, cell rupturing, or ingestion. Although there were significantly more cell rupturing events per insect on ThryvOn (mean ± SEM, 14.8 ± 1.7) than on non-ThryvOn squares (mean ± SEM, 10.3 ± 1.6), there was no difference attributable to ThryvOn in the average number of ingestion events per insect. However, the average duration of ingestion events was significantly shorter on squares with ThryvOn (mean ± SEM, 509 ± 148 s) than on squares without (mean ± SEM, 914 ± 135 s). This suggests that cotton fleahoppers continued to probe despite their inability to sustain ingestion. These results provide conclusive evidence that the Mpp51Aa2 pesticidal protein affects the feeding behavior of cotton fleahopper nymphs. Full article
(This article belongs to the Special Issue Chemical Toxicology and Insecticide Resistance on Insect Pests)
Show Figures

Figure 1

18 pages, 3857 KiB  
Article
The Synergistic Effect of Lemongrass Essential Oil and Flometoquin, Flonicamid, and Sulfoxaflor on Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae): Insights into Toxicity, Biochemical Impact, and Molecular Docking
by Moataz A. M. Moustafa, Fatma S. Ahmed, Nawal Abdulaziz Alfuhaid, Nourhan A. El-Said, El-Desoky S. Ibrahim and Mona Awad
Insects 2024, 15(5), 302; https://doi.org/10.3390/insects15050302 - 24 Apr 2024
Cited by 4 | Viewed by 2115
Abstract
The whitefly, Bemisia tabaci (Genn.), is one of the most dangerous polyphagous pests in the world. Eco-friendly compounds and new chemical insecticides have gained recognition for whitefly control. In this study, the toxicity and biochemical impact of flometoquin, flonicamid, and sulfoxaflor, alone or [...] Read more.
The whitefly, Bemisia tabaci (Genn.), is one of the most dangerous polyphagous pests in the world. Eco-friendly compounds and new chemical insecticides have gained recognition for whitefly control. In this study, the toxicity and biochemical impact of flometoquin, flonicamid, and sulfoxaflor, alone or combined with lemongrass essential oil (EO), against B. tabaci was studied. In addition, a molecular docking study was conducted to assess the binding affinity of the tested compounds to AchE. Based on the LC values, the descending order of the toxicity of the tested compounds to B. tabaci adults was as follows: sulfoxaflor > flonicamid > flometoquin > lemongrass EO. The binary mixtures of each of the tested compounds with lemongrass EO exhibited synergism in all combinations, with observed mortalities ranging from 15.09 to 22.94% higher than expected for an additive effect. Sulfoxaflor and flonicamid, alone or in combination with lemongrass EO, significantly inhibited AchE activity while only flonicamid demonstrated a significant impact on α-esterase, and none of the tested compounds affected cytochrome P450 or GST. However, the specific activity of P450 was significantly inhibited by the lemongrass/sulfoxaflor mixture while α-esterase activity was significantly inhibited by the lemongrass/flometoquin mixture. Moreover, the lemongrass EO and all the tested insecticides exhibited significant binding affinity to AchE with energy scores ranging from −4.69 to −7.06 kcal/mol. The current findings provide a foundation for utilizing combinations of essential oils and insecticides in the integrated pest management (IPM) of B. tabaci. Full article
(This article belongs to the Special Issue Chemical Toxicology and Insecticide Resistance on Insect Pests)
Show Figures

Figure 1

Back to TopTop