Dynamic Performance and Response of Composite Based Structures

A special issue of Journal of Composites Science (ISSN 2504-477X). This special issue belongs to the section "Composites Modelling and Characterization".

Deadline for manuscript submissions: closed (30 April 2023) | Viewed by 8478

Special Issue Editors


E-Mail Website
Guest Editor
Department of Industrial Engineering, Aerospace Section University of Naples “Federico II”, 80125 Naples, Italy
Interests: actuators; multifunctional materials; sensor technology; structural dynamics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

In perspective of optimizing transport systems making them increasingly sustainable, novel structural concepts should be introduced relying on a much more “composite thinking” philosophy. Looking at the new generation of means of transport (aerospace, naval, rail…) where the design requirements are becoming increasingly stringent, this Special Issue is intended to collect the most recent outcomes (case studies, models, formulations) as well as in-depth reviews on engineering strategies and interesting applications for the improvement of dynamic performance of the composite based structures including: acoustic, vibration, fatigue, impact strength properties and so on.

Dr. Maurizio Arena
Prof. Dr. Massimo Viscardi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Composites Science is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Damping
  • Dynamic response
  • Numerical models
  • Testing methods
  • Vibro-acoustic

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 3304 KiB  
Article
Localization of Vibration Weak Position of Composites Based on Weighted Modal Strain Energy Summation
by Ju Qiu, Wei Lian, Huaxiang Rao, Caiyun Wang, Tengteng Luo and Jiali Tang
J. Compos. Sci. 2022, 6(11), 324; https://doi.org/10.3390/jcs6110324 - 31 Oct 2022
Cited by 1 | Viewed by 1356
Abstract
In this paper, two typical examples are used to illustrate the weak position of aircraft structure in the process of vibration. Through the modal analysis of the typical composite plate and I-shaped beam, the first 20-order modal strain energy of the plate is [...] Read more.
In this paper, two typical examples are used to illustrate the weak position of aircraft structure in the process of vibration. Through the modal analysis of the typical composite plate and I-shaped beam, the first 20-order modal strain energy of the plate is extracted, which is difficult to locate the weak spot due to the highly scattered location of the higher modal strain energy. The modal participation factor is introduced as the weight factor of the summation of the modal strain energy. The modal participation factor is large, the weighting factor is large, and the high modal strain energy of the composite plate moves diagonally in the 45° direction of the composite plate and the high strain energy region is consistent with the previous modes of the plate. This is the result of the weak in-plane shear stiffness of the composite panel, which shows the effectiveness of the mode weighted summation method. The I-shaped composite beam uses the modal strain energy summation of the weight factor, and the higher modal strain energy is concentrated on the middle part of the beam and at 1/4 and 3/4 of it. Therefore, the weak part of the vibration can be clearly identified. The higher modal strain energy is extracted by the method proposed to this paper, which can be used as a reference to structural design and dynamic on-line monitoring. Full article
(This article belongs to the Special Issue Dynamic Performance and Response of Composite Based Structures)
Show Figures

Figure 1

17 pages, 1783 KiB  
Article
Robust Control and Thermal Analysis of a Reduced Model of Kirchhoff Composite Plate with Random Distribution of Thermopiezoelectric Sensors and Actuators
by Loukmane EI Khaldi, Mustapha Sanbi, Rachid Saadani and Miloud Rahmoune
J. Compos. Sci. 2022, 6(8), 242; https://doi.org/10.3390/jcs6080242 - 18 Aug 2022
Viewed by 1785
Abstract
This paper presents an implementation of a robust control LQG-Kalman model applied to composite Kirchhoff plate dynamics. A reduced model of a finite element method and control procedure is considered in the modeling of a structure because of the important number of piezoelectric [...] Read more.
This paper presents an implementation of a robust control LQG-Kalman model applied to composite Kirchhoff plate dynamics. A reduced model of a finite element method and control procedure is considered in the modeling of a structure because of the important number of piezoelectric patches used in control. Replacing the full model with a short model reduces the computational and time costs, especially when the number of degrees of freedom is significant. In robust control, the measurement of all states is not necessary and the observability and estimability criteria can be exploited, while conventional LQR control assumes that the data accessibility of all states is available. For this reason, robust control is proposed to control the random external disturbances and is compared to LQR control to illustrate its practicability and efficiency. The sensors and actuators in the thermo-piezoelectric material are randomly distributed on both sides of the plate to establish the control procedure. A Monte Carlo simulation is used in the selection of the degrees of freedom of sensors presenting high electrical outputs. Numerical simulations are performed to demonstrate the effectiveness of the proposed control procedure in a reduced model and under mechanical and thermal disturbances in comparison with the LQR control. Full article
(This article belongs to the Special Issue Dynamic Performance and Response of Composite Based Structures)
Show Figures

Figure 1

14 pages, 4712 KiB  
Article
A New Study on the Structure, and Phase Transition Temperature of Bulk Silicate Materials by Simulation Method of Molecular Dynamics
by Dung Nguyen Trong, Van Cao Long, Ştefan Ţălu, Umut Saraç, Phu Nguyen Dang and Kien Pham Huu
J. Compos. Sci. 2022, 6(8), 234; https://doi.org/10.3390/jcs6080234 - 8 Aug 2022
Cited by 3 | Viewed by 2173
Abstract
In this paper, the structure and phase transition temperature of bulk silicate materials are studied by the simulation method (SM) of molecular dynamics (MD). In this research, all samples are prepared on the same nanoscale material model with the atomic number of 3000 [...] Read more.
In this paper, the structure and phase transition temperature of bulk silicate materials are studied by the simulation method (SM) of molecular dynamics (MD). In this research, all samples are prepared on the same nanoscale material model with the atomic number of 3000 atoms, for which the SM of MD is performed with Beest-Kramer-van Santen and van Santen pair interaction potentials under cyclic boundary conditions. The obtained results show that both the model size (l) and the total energy of the system (Etot) increase slowly in the low temperature (T) region (negative T values) at pressure (P), P = 0 GPa. However, the increase of l determines the Etot value with very large values in the high T region. It is found that l decreases greatly in the high T region with increasing P, and vice versa. In addition, when P increases, the decrease in the Etot value is small in the low T region, but large in the high T region. As a consequence, a change appears in the lengths of the Si-Si, Si-O, and O-O bonds, which are very large in the high T and high P regions, but insignificant in the low T and low P regions. Furthermore, the structural unit number of SiO7 appears at T > 2974 K in the high P region. The obtained results will serve as the basis for future experimental studies to exploit the stored energy used in semiconductor devices. Full article
(This article belongs to the Special Issue Dynamic Performance and Response of Composite Based Structures)
Show Figures

Figure 1

12 pages, 4163 KiB  
Article
Vibration Parameters for Impact Detection of Composite Panel: A Neural Network Based Approach
by Maurizio Arena and Massimo Viscardi
J. Compos. Sci. 2021, 5(7), 185; https://doi.org/10.3390/jcs5070185 - 15 Jul 2021
Cited by 4 | Viewed by 2056
Abstract
The need for reliable methodologies for structural monitoring is certainly a current line of research in many engineering sectors. The detection of the impact on composite materials is in fact a recent subject of study, aimed at safeguarding the mechanical integrity and improving [...] Read more.
The need for reliable methodologies for structural monitoring is certainly a current line of research in many engineering sectors. The detection of the impact on composite materials is in fact a recent subject of study, aimed at safeguarding the mechanical integrity and improving the useful life of structural components. In such a context, the work deals with evaluation of the use of neural algorithms for localizing the position of the impacts on composite structures. Starting from FE (finite element) simulations, representative of the dynamic response of a CFRP (Carbon Fiber Reinforced Polymer) panel as a benchmark, the approach has been finally validated experimentally by modal parameters identification. Full article
(This article belongs to the Special Issue Dynamic Performance and Response of Composite Based Structures)
Show Figures

Figure 1

Back to TopTop