Hydrogel and Biomaterials

A special issue of Journal of Composites Science (ISSN 2504-477X). This special issue belongs to the section "Biocomposites".

Deadline for manuscript submissions: closed (30 June 2022) | Viewed by 18642

Special Issue Editor

College of Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
Interests: tissue engineering; biomaterial; hydrogel; bone defect repair

Special Issue Information

Dear Colleagues,

Tissue engineering holds great promise in regenerative medicine. Increasing evidence has shown that biomaterials have multiple abilities to stimulate cell behaviors and promote tissue regeneration. Hydrogels are emerging as one of the most promising alternative biomaterials for both soft and hard tissue regeneration. The critical properties of hydrogels can be designed and conveniently tuned by proper selection of the material and chemistry to be suitable for tissue engineering. 

Dr. Yan Han
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Composites Science is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 3395 KiB  
Article
Strontium-Induced Gelation of Sodium Alginate in the Presence of Carbon Nanotubes: Elemental Analysis and Gel Structure
by Olga S. Zueva, Tahar Khair, Svetlana R. Derkach, Mariia A. Kazantseva and Yuriy F. Zuev
J. Compos. Sci. 2023, 7(7), 286; https://doi.org/10.3390/jcs7070286 - 12 Jul 2023
Cited by 5 | Viewed by 1535
Abstract
The elemental composition and structural features of the junction zones of a strontium–alginate hydrogel and their alteration under the intercalation of multi-walled carbon nanotubes into the hydrogel structure were studied. It was shown that the crosslinking with Sr2+ cations due to electrostatic [...] Read more.
The elemental composition and structural features of the junction zones of a strontium–alginate hydrogel and their alteration under the intercalation of multi-walled carbon nanotubes into the hydrogel structure were studied. It was shown that the crosslinking with Sr2+ cations due to electrostatic interactions leads to the association of polymer chains into junction zones with incompletely filled cells. It was found that in strontium alginate, the average cell occupation number of Sr2+ cations is less than 1 and approximately equal to 0.64. In nanocomposite hydrogels including multi-walled carbon nanotubes, its increase to 0.81 indicates the appearance of a more ordered structure of alginate chains in junction zones. The information about the most preferred types of egg-box cells for binding with Sr2+ cations was analyzed. The existence of Sr2+ cations in nonequivalent positions was established. The possibility of separating the contributions of chemical adsorption due to ionic bonds with alginate chains and physical adsorption due to the appearance of local energy minima near alginate chains, leading to the appearance of ordered secondary structures, was demonstrated. It has been shown that the addition of carbon nanotubes to a hydrogel changes their sorption capability, leading, first of all, to an increase in the possible sites of physical adsorption. Full article
(This article belongs to the Special Issue Hydrogel and Biomaterials)
Show Figures

Figure 1

15 pages, 3170 KiB  
Article
Development and Characterization of Aloe vera Mucilaginous-Based Hydrogels for Psoriasis Treatment
by Silvana T. L. Jales, Raquel de M. Barbosa, André C. de Albuquerque, Luan H. V. Duarte, Girliane R. da Silva, Lyghia M. A. Meirelles, Tania M. S. da Silva, Adriano F. Alves, César Viseras, Fernanda N. Raffin and Tulio F. A. de L. Moura
J. Compos. Sci. 2022, 6(8), 231; https://doi.org/10.3390/jcs6080231 - 6 Aug 2022
Cited by 16 | Viewed by 4813
Abstract
The Aloe vera (L.) Burman f. pulp extract (AE), obtained from the inner parts of Aloe vera leaves, is rich in polysaccharides, including glucomannans, acemannans, pectic compounds, cellulose, and hemicelluloses; acemannan and glucomannan are considered the two main components responsible for most of [...] Read more.
The Aloe vera (L.) Burman f. pulp extract (AE), obtained from the inner parts of Aloe vera leaves, is rich in polysaccharides, including glucomannans, acemannans, pectic compounds, cellulose, and hemicelluloses; acemannan and glucomannan are considered the two main components responsible for most of the plant’s therapeutical properties. Besides having anti-inflammatory activity, these polysaccharides accelerate wound healing and promote skin regeneration, thus they can be utilized in healing products. The objective of this study was to develop Aloe vera mucilaginous-based hydrogels for topical use in psoriasis treatment. The hydrogels were prepared with 80% w/w of A. vera mucilaginous gel, evaluating two distinct polymers as the gelling agent: 1% carbopol 940 (FC1 and FC2) or 2% hydroxyethylcellulose (FH3 and FH4). FC1, FC2, FH3 and FH4 were evaluated for their organoleptic characteristics, rheological properties, pH and glucomannan content. Polysaccharide fractions (PFs) were extracted from the AE and used as a group of chemical markers and characterized by infrared (IR) spectroscopy and 1H nuclear magnetic resonance (1H NMR). The quantification of these markers in the raw material (AE) and in the hydrogels was carried out using spectrophotometric techniques in the UV-VIS region. The hydrogels-based hydroxyethylcellulose (FH3 and FH4) had glucomannan contents of 6.76 and 4.01 mg/g, respectively. Formulations with carbopol, FC1 and FC2, had glucomannan contents of 8.69 and 9.17 mg/g, respectively, an ideal pH for application on psoriasis, in addition to good spreadability and pseudoplastic and thixotropic behavior. Considering these results, hydrogel FC1 was evaluated for its keratolytic activity in a murine model of hyperkeratinization. For that, 0.5 mL of test formulations FC1 and FPC (0.05% clobetasol propionate cream) were topically applied to the proximal region of adult rats daily for 13 days. After euthanasia, approximately 2.5 cm of the proximal portion of each animal’s tail was cut and placed in 10% buffered formalin. Then, each tail fragment was processed and stained with hematoxylin and eosin (HE), and the results obtained from the histological sections indicated a 61% reduction in stratum corneum for animals treated with the A. vera hydrogel (FC1G) and 66% for animals treated with clobetasol propionate (PCG), compared to the group of animals that did not receive treatment (WTG). This study led to the conclusion that compared to the classic treatment (clobetasol propionate), the 80% A. vera hydrogel showed no significant difference, being effective in controlling hyperkeratinization. Full article
(This article belongs to the Special Issue Hydrogel and Biomaterials)
Show Figures

Figure 1

12 pages, 3271 KiB  
Article
Investigation of Collagen-Incorporated Sodium Alginate Bioprinting Hydrogel for Tissue Engineering
by Yan Chen, Yingge Zhou and Chi Wang
J. Compos. Sci. 2022, 6(8), 227; https://doi.org/10.3390/jcs6080227 - 4 Aug 2022
Cited by 11 | Viewed by 2696
Abstract
Tissue engineering is a promising area that is aimed at tissue regeneration and wound repair. Sodium alginate (SA) has been widely used as one of the most biocompatible materials for tissue engineering. The cost-efficiency and rapid gel ability made SA attractive in would [...] Read more.
Tissue engineering is a promising area that is aimed at tissue regeneration and wound repair. Sodium alginate (SA) has been widely used as one of the most biocompatible materials for tissue engineering. The cost-efficiency and rapid gel ability made SA attractive in would healing and regeneration area. To improve printability and elasticity, many hydrogel-based bioinks were developed by mixing SA with other natural or synthetic polymers. In this paper, composite SA/COL bioink was used for the bioprinting of artificial cartilage tissue mimicries. The results showed that the concentration of both SA and COL has significant effects on filament diameter and merging. A higher concentration of the bioink solution led to better printing fidelity and less deformation. Overall, a higher SA concentration and a lower COL concentration contributed to a lower shrinkage ratio after crosslinking. In summary, the SA/COL composite bioink has favorable rheological properties and this study provided material composition optimization for future bioprinting of engineered tissues. Full article
(This article belongs to the Special Issue Hydrogel and Biomaterials)
Show Figures

Figure 1

Review

Jump to: Research

33 pages, 3395 KiB  
Review
Enhancing Hydrogels with Quantum Dots
by Hossein Omidian and Renae L. Wilson
J. Compos. Sci. 2024, 8(6), 203; https://doi.org/10.3390/jcs8060203 - 29 May 2024
Cited by 1 | Viewed by 2136
Abstract
This manuscript explores the interdisciplinary integration of quantum dot–hydrogel composites and smart materials and their applications across a spectrum of fields, including biomedical engineering, environmental sensing, and energy harvesting. It covers the synthesis of novel materials like fluorescent hydrogel nanocomposites that display enhanced [...] Read more.
This manuscript explores the interdisciplinary integration of quantum dot–hydrogel composites and smart materials and their applications across a spectrum of fields, including biomedical engineering, environmental sensing, and energy harvesting. It covers the synthesis of novel materials like fluorescent hydrogel nanocomposites that display enhanced chemical stability, mechanical strength, and thermal resistance, highlighting their utility in environmental monitoring and catalysis. In the biomedical sector, innovations include hydrogel composites for targeted drug delivery and advanced therapies such as photothermal DNA hydrogels for tumor treatment. This review also discusses the application of these materials in imaging, diagnostics, and the development of smart sensors capable of detecting various biological and environmental changes. Its scope further extends to optoelectronics and the design of energy-efficient systems, underscoring the versatile functionalities of hydrogels in modern technological applications. Challenges remain in scaling up these technologies for commercial use and ensuring their long-term stability and safety, necessitating future research focused on sustainable, scalable solutions that can be integrated into existing systems. Full article
(This article belongs to the Special Issue Hydrogel and Biomaterials)
Show Figures

Figure 1

24 pages, 2032 KiB  
Review
Hydrogel Composites for Multifunctional Biomedical Applications
by Hossein Omidian, Arnavaz Akhzarmehr and Sumana Dey Chowdhury
J. Compos. Sci. 2024, 8(4), 154; https://doi.org/10.3390/jcs8040154 - 19 Apr 2024
Cited by 1 | Viewed by 2186
Abstract
Hydrogel composites are pivotal in biomedical research, showing promise across various applications. This review aims to thoroughly examine their significance and versatile roles in regenerative medicine, tissue engineering, and drug delivery systems. Key areas of investigation include integrating growth factor delivery systems, overcoming [...] Read more.
Hydrogel composites are pivotal in biomedical research, showing promise across various applications. This review aims to thoroughly examine their significance and versatile roles in regenerative medicine, tissue engineering, and drug delivery systems. Key areas of investigation include integrating growth factor delivery systems, overcoming structural limitations in tissue engineering, exploring innovations in clinical applications, and addressing challenges in achieving bioactivity and biomechanical compatibility. Furthermore, the review will discuss controlled release mechanisms for drug delivery, advancements in biocompatibility and mechanical stability, recent progress in tissue regeneration and wound healing, and future prospects such as smart hydrogels, personalized treatments, and integration with wearable technology. Ultimately, the goal is to provide a comprehensive understanding of how hydrogel composites impact biomedical research and clinical practice. Full article
(This article belongs to the Special Issue Hydrogel and Biomaterials)
Show Figures

Figure 1

26 pages, 9454 KiB  
Review
Inorganic-Nanomaterial-Composited Hydrogel Dressings for Wound Healing
by Ying Yang, Pingfei Wang, Guiju Zhang, Shan He and Baocai Xu
J. Compos. Sci. 2024, 8(2), 46; https://doi.org/10.3390/jcs8020046 - 26 Jan 2024
Cited by 3 | Viewed by 2467
Abstract
Wound management heavily relies on the vital contribution of wound dressings, emphasizing the significance of finding an ideal dressing that can fulfill the intricate requirements of the wound healing process with multiple functions. A promising strategy is combining several materials and therapies to [...] Read more.
Wound management heavily relies on the vital contribution of wound dressings, emphasizing the significance of finding an ideal dressing that can fulfill the intricate requirements of the wound healing process with multiple functions. A promising strategy is combining several materials and therapies to create multifunctional wound dressings. Nanocomposite hydrogel dressings based on nanomaterials, combining the advantages of nanomaterials and hydrogels in wound treatment, can significantly improve their respective performance and compensate for their shortcomings. A variety of nanocomposite wound dressings with diverse structures and synergistic functions have been developed in recent years, achieving ideal results in wound management applications. In this review, the multiple functions, advantages, and limitations of hydrogels as wound dressings are first discussed. Additionally, the application of inorganic nanomaterials in wound healing is also elaborated on. Furthermore, we focused on summarizing and analyzing nanocomposite hydrogel dressings for wound healing, which contain various inorganic nanomaterials, including metals, metal oxides, metal sulfides, carbon-based nanomaterials, and silicon-based nanoparticles. Finally, prospects for nanocomposite hydrogel wound dressings are envisaged, providing insights for further research in wound management. Full article
(This article belongs to the Special Issue Hydrogel and Biomaterials)
Show Figures

Figure 1

19 pages, 7116 KiB  
Review
Single-Component Physical Hydrogels of Dendritic Molecules
by Evgeny Apartsin and Anne-Marie Caminade
J. Compos. Sci. 2023, 7(1), 26; https://doi.org/10.3390/jcs7010026 - 10 Jan 2023
Cited by 4 | Viewed by 1963
Abstract
Hydrogels are hydrophilic, three-dimensional networks able to imprison large amounts of water and are largely used in pharmaceutical formulations. Hydrogels are frequently obtained from hydrophilic polymers, either natural, biohybrid, or synthetic. Owing to their peculiar structure, dendrimers can be considered prospective building blocks [...] Read more.
Hydrogels are hydrophilic, three-dimensional networks able to imprison large amounts of water and are largely used in pharmaceutical formulations. Hydrogels are frequently obtained from hydrophilic polymers, either natural, biohybrid, or synthetic. Owing to their peculiar structure, dendrimers can be considered prospective building blocks for hydrogel networks. This review gathers the use of different types of amphiphilic dendritic structures able to generate physical hydrogels alone. Such dendritic structures comprise dendrimers, Janus dendrimers, and dendrons. The first part concerns different types of positively charged phosphorus dendrimers used to generate hydrogels, which are also suitable to form fibers, and for encapsulating diverse substances, or forming complexes with genetic materials for their slow delivery. The second part concerns PAMAM dendrimers functionalized with collagen mimetics. The third part concerns amphiphilic Janus dendrimers, whereas the fourth part displays different types of amphiphilic dendrons and their use, in particular in the fields of materials and drug delivery. Full article
(This article belongs to the Special Issue Hydrogel and Biomaterials)
Show Figures

Figure 1

Back to TopTop