Yeast Cytokinesis

A special issue of Journal of Fungi (ISSN 2309-608X). This special issue belongs to the section "Fungal Cell Biology, Metabolism and Physiology".

Deadline for manuscript submissions: closed (31 May 2024) | Viewed by 9752

Special Issue Editors


E-Mail Website
Guest Editor
Department of Molecular Genetics, Ohio State University, Columbus, OH, USA
Interests: cytokinesis; cell division; cell biology; fission yeast; fungal genetics; cell integrity; anti-fungal drug targets

E-Mail Website
Guest Editor
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
Interests: cytokinesis; abscission; actomyosin ring; exocytosis; ECM remodeling; septin; hepatocyte polarization; apical tube formation

Special Issue Information

Dear Colleagues,

Cytokinesis partitions cellular constituents from a mother cell into two daughter cells and plays essential roles in cell proliferation, cell differentiation, and tissue homeostasis. Due to powerful genetics, simple genomes, and efficient homologous recombination, both fission yeast and budding yeast have served as premier models for studying the general principles of cytokinesis with unrivaled spatial and temporal resolution. Cytokinesis in yeast can be divided into several critical stages: division site selection, actomyosin contractile ring assembly and constriction, targeted exocytosis for plasma membrane deposition and extracellular matrix (ECM)/cell wall remodeling, and cell separation. These stages are coordinated by conserved signaling pathways, namely the septation initiation network (SIN) in fission yeast and the mitotic exit network (MEN) in budding yeast. Tremendous progress has been made on all aspects of yeast cytokinesis in recent decades. In this Special Issue, we showcase a rich collection of both reviews and original research papers to reflect this progress, while focusing on the discoveries made over the last few years.

Prof. Dr. Jian-Qiu Wu
Prof. Dr. Erfei Bi 
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Fungi is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cell division
  • cytokinesis
  • contractile ring
  • septum formation
  • budding yeast
  • fission yeast
  • fungal genetics
  • microscopy
  • cell biology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 6375 KiB  
Article
The Myosin-V Myo51 and Alpha-Actinin Ain1p Cooperate during Contractile Ring Assembly and Disassembly in Fission Yeast Cytokinesis
by Zoe L. Tyree, Kimberly Bellingham-Johnstun, Jessica Martinez-Baird and Caroline Laplante
J. Fungi 2024, 10(9), 647; https://doi.org/10.3390/jof10090647 - 12 Sep 2024
Viewed by 785
Abstract
Cytokinesis is driven in part by the constriction of a ring of actin filaments, myosin motors and other proteins. In fission yeast, three myosins contribute to cytokinesis including a Myosin-V Myo51. As Myosin-Vs typically carry cargo along actin filaments, the role of Myo51 [...] Read more.
Cytokinesis is driven in part by the constriction of a ring of actin filaments, myosin motors and other proteins. In fission yeast, three myosins contribute to cytokinesis including a Myosin-V Myo51. As Myosin-Vs typically carry cargo along actin filaments, the role of Myo51 in cytokinesis remains unclear. The previous work suggests that Myo51 may crosslink actin filaments. We hypothesized that if Myo51 crosslinks actin filaments, cells carrying double deletions of ain1, which encodes the crosslinker alpha-actinin, and myo51 (∆ain1 ∆myo51 cells) will exhibit more severe cytokinesis phenotypes than cells with the single ∆ain1 mutation. Contrary to our expectations, we found that the loss of Myo51 in ∆ain1 cells partially rescued the severity of the node clumping phenotype measured in ∆ain1 cells. Furthermore, we describe a normal process of contractile ring “shedding”, the appearance of fragments of ring material extending away from the contractile ring along the ingressing septum that occurs in the second half of constriction. We measured that ∆ain1 ∆myo51 cells exhibit premature and exaggerated shedding. Our work suggests that Myo51 is not a simple actin filament crosslinker. Instead, a role in effective node motion better recapitulates its function during ring assembly and disassembly. Full article
(This article belongs to the Special Issue Yeast Cytokinesis)
Show Figures

Figure 1

14 pages, 5662 KiB  
Article
The Mechanosensitive Pkd2 Channel Modulates the Recruitment of Myosin II and Actin to the Cytokinetic Contractile Ring
by Pritha Chowdhury, Debatrayee Sinha, Abhishek Poddar, Madhurya Chetluru and Qian Chen
J. Fungi 2024, 10(7), 455; https://doi.org/10.3390/jof10070455 - 28 Jun 2024
Cited by 1 | Viewed by 953
Abstract
Cytokinesis, the last step in cell division, separates daughter cells through mechanical force. This is often through the force produced by an actomyosin contractile ring. In fission yeast cells, the ring helps recruit a mechanosensitive ion channel, Pkd2, to the cleavage furrow, whose [...] Read more.
Cytokinesis, the last step in cell division, separates daughter cells through mechanical force. This is often through the force produced by an actomyosin contractile ring. In fission yeast cells, the ring helps recruit a mechanosensitive ion channel, Pkd2, to the cleavage furrow, whose activation by membrane tension promotes calcium influx and daughter cell separation. However, it is unclear how the activities of Pkd2 may affect the actomyosin ring. Here, through both microscopic and genetic analyses of a hypomorphic pkd2 mutant, we examined the potential role of this essential gene in assembling the contractile ring. The pkd2-81KD mutation significantly increased the counts of the type II myosin heavy chain Myo2 (+18%), its regulatory light chain Rlc1 (+37%) and actin (+100%) molecules in the ring, compared to the wild type. Consistent with a regulatory role of Pkd2 in the ring assembly, we identified a strong negative genetic interaction between pkd2-81KD and the temperature-sensitive mutant myo2-E1. The pkd2-81KD myo2-E1 cells often failed to assemble a complete contractile ring. We conclude that Pkd2 modulates the recruitment of type II myosin and actin to the contractile ring, suggesting a novel calcium-dependent mechanism regulating the actin cytoskeletal structures during cytokinesis. Full article
(This article belongs to the Special Issue Yeast Cytokinesis)
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 3959 KiB  
Review
Central Role of the Actomyosin Ring in Coordinating Cytokinesis Steps in Budding Yeast
by Magdalena Foltman and Alberto Sanchez-Diaz
J. Fungi 2024, 10(9), 662; https://doi.org/10.3390/jof10090662 - 21 Sep 2024
Viewed by 801
Abstract
Eukaryotic cells must accurately transfer their genetic material and cellular components to their daughter cells. Initially, cells duplicate their chromosomes and subsequently segregate them toward the poles. The actomyosin ring, a crucial molecular machinery normally located in the middle of the cells and [...] Read more.
Eukaryotic cells must accurately transfer their genetic material and cellular components to their daughter cells. Initially, cells duplicate their chromosomes and subsequently segregate them toward the poles. The actomyosin ring, a crucial molecular machinery normally located in the middle of the cells and underneath the plasma membrane, then physically divides the cytoplasm and all components into two daughter cells, each ready to start a new cell cycle. This process, known as cytokinesis, is conserved throughout evolution. Defects in cytokinesis can lead to the generation of genetically unstable tetraploid cells, potentially initiating uncontrolled proliferation and cancer. This review focuses on the molecular mechanisms by which budding yeast cells build the actomyosin ring and the preceding steps involved in forming a scaffolding structure that supports the challenging structural changes throughout cytokinesis. Additionally, we describe how cells coordinate actomyosin ring contraction, plasma membrane ingression, and extracellular matrix deposition to successfully complete cytokinesis. Furthermore, the review discusses the regulatory roles of Cyclin-Dependent Kinase (Cdk1) and the Mitotic Exit Network (MEN) in ensuring the precise timing and execution of cytokinesis. Understanding these processes in yeast provides insights into the fundamental aspects of cell division and its implications for human health. Full article
(This article belongs to the Special Issue Yeast Cytokinesis)
Show Figures

Figure 1

19 pages, 1263 KiB  
Review
Septin Organization and Dynamics for Budding Yeast Cytokinesis
by Maritzaida Varela Salgado and Simonetta Piatti
J. Fungi 2024, 10(9), 642; https://doi.org/10.3390/jof10090642 - 9 Sep 2024
Viewed by 838
Abstract
Cytokinesis, the process by which the cytoplasm divides to generate two daughter cells after mitosis, is a crucial stage of the cell cycle. Successful cytokinesis must be coordinated with chromosome segregation and requires the fine orchestration of several processes, such as constriction of [...] Read more.
Cytokinesis, the process by which the cytoplasm divides to generate two daughter cells after mitosis, is a crucial stage of the cell cycle. Successful cytokinesis must be coordinated with chromosome segregation and requires the fine orchestration of several processes, such as constriction of the actomyosin ring, membrane reorganization, and, in fungi, cell wall deposition. In Saccharomyces cerevisiae, commonly known as budding yeast, septins play a pivotal role in the control of cytokinesis by assisting the assembly of the cytokinetic machinery at the division site and controlling its activity. Yeast septins form a collar at the division site that undergoes major dynamic transitions during the cell cycle. This review discusses the functions of septins in yeast cytokinesis, their regulation and the implications of their dynamic remodelling for cell division. Full article
(This article belongs to the Special Issue Yeast Cytokinesis)
Show Figures

Figure 1

12 pages, 1784 KiB  
Review
Processes Controlling the Contractile Ring during Cytokinesis in Fission Yeast, Including the Role of ESCRT Proteins
by Imane M. Rezig, Wandiahyel G. Yaduma and Christopher J. McInerny
J. Fungi 2024, 10(2), 154; https://doi.org/10.3390/jof10020154 - 15 Feb 2024
Viewed by 1848
Abstract
Cytokinesis, as the last stage of the cell division cycle, is a tightly controlled process amongst all eukaryotes, with defective division leading to severe cellular consequences and implicated in serious human diseases and conditions such as cancer. Both mammalian cells and the fission [...] Read more.
Cytokinesis, as the last stage of the cell division cycle, is a tightly controlled process amongst all eukaryotes, with defective division leading to severe cellular consequences and implicated in serious human diseases and conditions such as cancer. Both mammalian cells and the fission yeast Schizosaccharomyces pombe use binary fission to divide into two equally sized daughter cells. Similar to mammalian cells, in S. pombe, cytokinetic division is driven by the assembly of an actomyosin contractile ring (ACR) at the cell equator between the two cell tips. The ACR is composed of a complex network of membrane scaffold proteins, actin filaments, myosin motors and other cytokinesis regulators. The contraction of the ACR leads to the formation of a cleavage furrow which is severed by the endosomal sorting complex required for transport (ESCRT) proteins, leading to the final cell separation during the last stage of cytokinesis, the abscission. This review describes recent findings defining the two phases of cytokinesis in S. pombe: ACR assembly and constriction, and their coordination with septation. In summary, we provide an overview of the current understanding of the mechanisms regulating ACR-mediated cytokinesis in S. pombe and emphasize a potential role of ESCRT proteins in this process. Full article
(This article belongs to the Special Issue Yeast Cytokinesis)
Show Figures

Figure 1

19 pages, 2217 KiB  
Review
Meiotic Cytokinesis in Saccharomyces cerevisiae: Spores That Just Need Closure
by Matthew Durant, Xheni Mucelli and Linda S. Huang
J. Fungi 2024, 10(2), 132; https://doi.org/10.3390/jof10020132 - 6 Feb 2024
Cited by 2 | Viewed by 2109
Abstract
In the budding yeast Saccharomyces cerevisiae, sporulation occurs during starvation of a diploid cell and results in the formation of four haploid spores forming within the mother cell ascus. Meiosis divides the genetic material that is encapsulated by the prospore membrane that [...] Read more.
In the budding yeast Saccharomyces cerevisiae, sporulation occurs during starvation of a diploid cell and results in the formation of four haploid spores forming within the mother cell ascus. Meiosis divides the genetic material that is encapsulated by the prospore membrane that grows to surround the haploid nuclei; this membrane will eventually become the plasma membrane of the haploid spore. Cellularization of the spores occurs when the prospore membrane closes to capture the haploid nucleus along with some cytoplasmic material from the mother cell, and thus, closure of the prospore membrane is the meiotic cytokinetic event. This cytokinetic event involves the removal of the leading-edge protein complex, a complex of proteins that localizes to the leading edge of the growing prospore membrane. The development and closure of the prospore membrane must be coordinated with other meiotic exit events such as spindle disassembly. Timing of the closure of the prospore membrane depends on the meiotic exit pathway, which utilizes Cdc15, a Hippo-like kinase, and Sps1, an STE20 family GCKIII kinase, acting in parallel to the E3 ligase Ama1-APC/C. This review describes the sporulation process and focuses on the development of the prospore membrane and the regulation of prospore membrane closure. Full article
(This article belongs to the Special Issue Yeast Cytokinesis)
Show Figures

Figure 1

14 pages, 1180 KiB  
Review
The Roles of Septins in Regulating Fission Yeast Cytokinesis
by Shengnan Zheng, Biyu Zheng and Chuanhai Fu
J. Fungi 2024, 10(2), 115; https://doi.org/10.3390/jof10020115 - 30 Jan 2024
Cited by 1 | Viewed by 1586
Abstract
Cytokinesis is required to separate two daughter cells at the end of mitosis, and septins play crucial roles in many aspects of cytokinesis. While septins have been intensively studied in many model organisms, including the budding yeast Saccharomyces cerevisiae, septins have been [...] Read more.
Cytokinesis is required to separate two daughter cells at the end of mitosis, and septins play crucial roles in many aspects of cytokinesis. While septins have been intensively studied in many model organisms, including the budding yeast Saccharomyces cerevisiae, septins have been relatively less characterized in the fission yeast Schizosaccharomyces pombe, which has proven to be an excellent model organism for studying fundamental cell biology. In this review, we summarize the findings of septins made in fission yeasts mainly from four aspects: the domain structure of septins, the localization of septins during the cell cycle, the roles of septins in regulating cytokinesis, and the regulatory proteins of septins. Full article
(This article belongs to the Special Issue Yeast Cytokinesis)
Show Figures

Figure 1

Back to TopTop