Fungal Biotechnology and Application 3.0

A special issue of Journal of Fungi (ISSN 2309-608X). This special issue belongs to the section "Fungi in Agriculture and Biotechnology".

Deadline for manuscript submissions: 30 April 2025 | Viewed by 5075

Special Issue Editor


E-Mail Website
Guest Editor
Food Science and Technology Program, Department of Life Sciences, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
Interests: food science; phytochemicals; nutraceuticals; pharmaceuticals; functional foods; molecular nutrition; cell biology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue (SI) calls for submissions of either original studies or literature reviews that describe the biotechnology and advanced applications of fungi which are beneficial or harmful to human beings. This SI will collect recent original research findings and critical reviews on current fungal biotechnology and the industrial application of fungi in the fields of cosmetics, food and pharmaceuticals. The topics of interest include but are not limited to:

  • The application of fungi in all kinds of industries (e.g., scientific research, fermentation for cosmetic ingredients and pharmaceuticals, and food);
  • Fungal secondary metabolites and metabolic flow analysis;
  • Bioprospecting of novel fungi from specific environments;
  • Mechanisms of pathogenic fungal infection and its prevention and treatment;
  • Ecology, morphological and ultrastructural diversity of fungi;
  • Cultivation and utilization of medicinal or edible mushrooms.

Prof. Dr. Baojun Xu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Fungi is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biotechnology
  • utilization
  • health benefits
  • secondary metabolites
  • fermentation
  • mushroom
  • practical applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 2768 KiB  
Article
Deconstruction of Alkali Lignin and Lignocellulosic Substrates by Aspergillus ochraceus DY1 Isolated from Rotten Wood
by Namdol Nilza, Ram Prasad, Ajit Varma and Menaka Devi Salam
J. Fungi 2024, 10(12), 810; https://doi.org/10.3390/jof10120810 - 22 Nov 2024
Viewed by 119
Abstract
The present study reports the ability of a fungal isolate Aspergillus ochraceus DY1, obtained from rotten wood, to degrade alkali lignin (AL) and lignocelluloses in an efficient manner. The efficiency of degradation was monitored by measuring the percentage of decolorization and utilizing GC-MS [...] Read more.
The present study reports the ability of a fungal isolate Aspergillus ochraceus DY1, obtained from rotten wood, to degrade alkali lignin (AL) and lignocelluloses in an efficient manner. The efficiency of degradation was monitored by measuring the percentage of decolorization and utilizing GC-MS for identifying degradation products at different time intervals (10, 20, 30, and 40 days). The optimal degradation of alkali lignin (AL) was achieved at 0.01% concentration, 25 °C, and pH 7, resulting in 63.64% degradation after 40 days of incubation. A GC-MS analysis revealed significant degradation products, including n-hexadecanoic acid, octadecane, butylated hydroxytoluene, 2,6,11-trimethyl-dodecane, dibutyl phthalate, oleic acid, 3,5-dimethoxy-phenol acetate, and 2-(phenylmethylene)- cyclohexanone. Structural changes in AL were confirmed through HSQC 2D NMR and size-exclusion chromatography, indicating depolymerization and reduced molecular weight. Furthermore, A. ochraceus DY1 demonstrated substantial biomass loss in corn stover (62.5%) and sugarcane bagasse (50%) after 7 days of solid-state fermentation. Surface morphological depletion was observed in the bio-treated corn stover through SEM and confocal microscopy, which was not seen in the untreated one. These findings underscore the potential of A. ochraceus DY1 for efficient lignin degradation, with promising applications in biofuel production, waste management in the paper and pulp industry, and the synthesis of value-added bioproducts. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Application 3.0)
Show Figures

Figure 1

19 pages, 10939 KiB  
Article
Comparative Evaluation of Mechanical and Physical Properties of Mycelium Composite Boards Made from Lentinus sajor-caju with Various Ratios of Corn Husk and Sawdust
by Praween Jinanukul, Jaturong Kumla, Worawoot Aiduang, Wandee Thamjaree, Rawiwan Oranratmanee, Umpiga Shummadtayar, Yuttana Tongtuam, Saisamorn Lumyong, Nakarin Suwannarach and Tanut Waroonkun
J. Fungi 2024, 10(9), 634; https://doi.org/10.3390/jof10090634 - 5 Sep 2024
Viewed by 1210
Abstract
Mycelium-based composites (MBCs) exhibit varied properties as alternative biodegradable materials that can be used in various industries such as construction, furniture, household goods, and packaging. However, these properties are primarily influenced by the type of substrate used. This study aims to investigate the [...] Read more.
Mycelium-based composites (MBCs) exhibit varied properties as alternative biodegradable materials that can be used in various industries such as construction, furniture, household goods, and packaging. However, these properties are primarily influenced by the type of substrate used. This study aims to investigate the properties of MBCs produced from Lentinus sajor-caju strain CMU-NK0427 using different ratios of sawdust to corn husk in the development of mycelium composite boards (MCBs) with thicknesses of 8, 16, and 24 mm. The results indicate that variations in the ratios of corn husk to sawdust and thickness affected the mechanical and physical properties of the obtained MCBs. Reducing the corn husk content in the substrate increased the modulus of elasticity, density, and thermal conductivity, while increasing the corn husk content increased the bending strength, shrinkage, water absorption, and volumetric swelling. Additionally, an increase in thickness with the same substrate ratio only indicated an increase in density and shrinkage. MCBs have sound absorption properties ranging from 61 to 94% at a frequency of 1000 Hz. According to the correlation results, a reduction in corn husk content in the substrate has a significant positive effect on the reduction in bending strength, shrinkage, and water absorption in MCBs. However, a decrease in corn husk content shows a strong negative correlation with the increase in the modulus of elasticity, density, and thermal conductivity. The thickness of MCBs with the same substrate ratio only shows a significant negative correlation with the modulus of elasticity and bending strength. Compared to commercial boards, the mechanical (bending strength) and physical (density, thermal conductivity, and sound absorption) properties of MCBs made from a 100% corn husk ratio are most similar to those of softboards and acoustic boards. The results of this study can provide valuable information for the production of MCBs and will serve as a guide to enhance strategies for further improving their properties for commercial manufacturing, as well as fulfilling the long-term goal of eco-friendly recycling of lignocellulosic substrates. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Application 3.0)
Show Figures

Figure 1

14 pages, 4996 KiB  
Article
Effects of Light on the Fruiting Body Color and Differentially Expressed Genes in Flammulina velutipes
by Ji-Hoon Im, Che-Hwon Park, Ju-Hyeon Shin, Youn-Lee Oh, Minji Oh, Nam-Chon Paek and Young-Jin Park
J. Fungi 2024, 10(6), 372; https://doi.org/10.3390/jof10060372 - 22 May 2024
Viewed by 1251
Abstract
Light plays vital roles in fungal growth, development, reproduction, and pigmentation. In Flammulina velutipes, the color of the fruiting body exhibits distinct changes in response to light; however, the underlying molecular mechanisms remain unknown. Therefore, in this study, we aimed to analyze [...] Read more.
Light plays vital roles in fungal growth, development, reproduction, and pigmentation. In Flammulina velutipes, the color of the fruiting body exhibits distinct changes in response to light; however, the underlying molecular mechanisms remain unknown. Therefore, in this study, we aimed to analyze the F. velutipes transcriptome under red, green, and blue light-emitting diode (LED) lights to identify the key genes affecting the light response and fruiting body color in this fungus. Additionally, we conducted protein–protein interaction (PPI) network analysis of the previously reported fruiting body color-related gene, Fvpal1, to identify the hub genes. Phenotypic analysis revealed that fruiting bodies exposed to green and blue lights were darker than those untreated or exposed to red light, with the color intensifying more after 48 h of exposure to blue light compared to that after 24 h of exposure. Differentially expressed gene (DEG) analyses of all light treatments for 24 h revealed that the numbers of DEGs were 17, 74, and 257 under red, green, and blue lights, respectively. Subsequently, functional enrichment analysis was conducted of the DEGs identified under green and blue lights, which influenced the color of F. velutipes. In total, 103 of 168 downregulated DEGs under blue and green lights were included in the enrichment analysis. Among the DEGs enriched under both green and blue light treatments, four genes were related to monooxygenases, with three genes annotated as cytochrome P450s that are crucial for various metabolic processes in fungi. PPI network analysis of Fvpal1 revealed associations with 11 genes, among which the expression of one gene, pyridoxal-dependent decarboxylase, was upregulated in F. velutipes exposed to blue light. These findings contribute to our understanding of the molecular mechanisms involved in the fruiting body color changes in response to light and offer potential molecular markers for further exploration of light-mediated regulatory pathways. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Application 3.0)
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 725 KiB  
Review
The Application of Fungi and Their Secondary Metabolites in Aquaculture
by Abigail John Onomu and Grace Emily Okuthe
J. Fungi 2024, 10(10), 711; https://doi.org/10.3390/jof10100711 - 11 Oct 2024
Viewed by 1702
Abstract
Ensuring sustainability has increasingly become a significant concern not only in aquaculture but in the general agrifood sector. Therefore, it is imperative to investigate pathways to feed substitutes/best practices to enhance aquaculture sustainability. The application of fungi in aquaculture provides innovative methods to [...] Read more.
Ensuring sustainability has increasingly become a significant concern not only in aquaculture but in the general agrifood sector. Therefore, it is imperative to investigate pathways to feed substitutes/best practices to enhance aquaculture sustainability. The application of fungi in aquaculture provides innovative methods to enhance the sustainability and productivity of aquaculture. Fungi play numerous roles in aquaculture, including growth, immunity enhancement and disease resistance. They also play a role in bioremediation of waste and bioflocculation. The application of fungi improves the suitability and utilization of terrestrial plant ingredients in aquaculture by reducing the fibre fractions and anti-nutritional factors and increasing the nutrients and mineral contents of plant ingredients. Fungi are good flotation agents and can enhance the buoyancy of aquafeed. Pigments from fungi enhance the colouration of fish fillets, making them more attractive to consumers. This paper, via the relevant literature, explores the multifaceted roles of fungi in aquaculture, emphasizing their potential to transform aquaculture through environmentally friendly and sustainable techniques. The effectiveness of fungi in reducing fibre fractions and enhancing nutrient availability is influenced by the duration of fermentation and the dosage administered, which may differ for various feed ingredients, making it difficult for most aquaculture farmers to apply fungi approximately. Therefore, the most effective dosage and fermentation duration for each feed ingredient should be investigated. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Application 3.0)
Show Figures

Figure 1

Back to TopTop