Biotechnological Applications of Marine Microalgae

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Marine Biotechnology Related to Drug Discovery or Production".

Deadline for manuscript submissions: 31 March 2025 | Viewed by 2788

Special Issue Editor


E-Mail Website
Guest Editor
Centre for Research in Agricultural Genomics, Barcelona, Spain
Interests: microalgae; synthetic biology; metabolic engineering; biotechnology; marine natural products; marine drugs; marine biochemistry;

Special Issue Information

Dear Colleagues,

Marine microalgae hold a great potential in biotechnology. They represent a natural reservoir of industrially relevant chemicals, like carotenoids and fatty acids, and can be used for many applications, like as fertilizer in agriculture, as a source of biofuels, and more recently as bioengineering hosts for the production of useful biomolecules.

However, they still need optimization to become economically competitive with more established biotechnological hosts like bacteria and yeasts. Synthetic biology approaches are nowadays providing useful tools and workflows to improve microalgal potential for biotechnology.

This Special Issue invites articles focusing on microalgal applications in biotechnology, in various sectors like pharmaceuticals, nutraceutics, and cosmetics production, among others. We particularly welcome articles that combine advanced molecular biology and synthetic biology approaches for the optimization of algae as eco-sustainable biofactories of high-value compounds.

Dr. Alfonsina Milito
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine algae
  • microalgae
  • synthetic biology
  • biotechnology
  • natural products
  • genetic engineering

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 4297 KiB  
Article
Antiviral Activity of Chlorophyll Extracts from Tetraselmis sp., a Marine Microalga, Against Zika Virus Infection
by Nalae Kang, Eun-A Kim, Areumi Park, Seong-Yeong Heo, Jun-Ho Heo, Won-Kyu Lee, Yong-Kyun Ryu and Soo-Jin Heo
Mar. Drugs 2024, 22(9), 397; https://doi.org/10.3390/md22090397 - 31 Aug 2024
Cited by 1 | Viewed by 1155
Abstract
Recent advancements in the large-scale cultivation of Tetraselmis sp. in Korea have enabled year-round production of this marine microalgae. This study explores the potential industrial applications of Tetraselmis sp. biomass by investigating the antiviral properties of its extracts and primary components. The antiviral [...] Read more.
Recent advancements in the large-scale cultivation of Tetraselmis sp. in Korea have enabled year-round production of this marine microalgae. This study explores the potential industrial applications of Tetraselmis sp. biomass by investigating the antiviral properties of its extracts and primary components. The antiviral effects of Tetraselmis sp. extracts were evaluated in Zika virus (ZIKV)-infected cells. Following extensive isolation and purification, the main compounds were characterized using liquid chromatography–mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) analyses. Their antiviral activities were confirmed using in vitro and in silico tests. Tetraselmis sp. extracts reduced infectious viral particles and non-structural protein 1 messenger RNA levels in ZIKV-infected cells without inducing cytotoxicity. Additionally, they modulated the interferon-mediated immune system responses. Tetraselmis sp. extracts are composed of four main chlorophylls: chlorophyll a, chlorin e6-131-152-dimethyl-173-phytyl ester, hydroxychlorophyll a, and hydroxypheophytin a. Among them, chlorophyll a, chlorin e6-131-152-dimethyl-173-phytyl ester, and hydroxypheophytin showed the antiviral activities in ZIKV-infected cells and molecular docking simulations predicted interactions between these chlorophylls and ZIKV. Our findings suggest that Tetraselmis sp. chlorophyll extracts exert antiviral effects against ZIKV and could serve as potential therapeutic candidates against ZIKV infection. Full article
(This article belongs to the Special Issue Biotechnological Applications of Marine Microalgae)
Show Figures

Figure 1

15 pages, 2188 KiB  
Article
Distribution and Level of Bioactive Monoacylglycerols in 12 Marine Microalgal Species
by Giovanna Santaniello, Gianna Falascina, Marcello Ziaco, Laura Fioretto, Angela Sardo, Martina Carelli, Mariarosaria Conte, Giovanna Romano and Adele Cutignano
Mar. Drugs 2024, 22(6), 258; https://doi.org/10.3390/md22060258 - 31 May 2024
Viewed by 1237
Abstract
Microalgae are currently considered an attractive source of highly valuable metabolites potentially exploitable as anticancer agents, nutraceuticals and cosmeceuticals and for bioenergy purposes. Their ease of culturing and their high growth rates further promote their use as raw material for the production of [...] Read more.
Microalgae are currently considered an attractive source of highly valuable metabolites potentially exploitable as anticancer agents, nutraceuticals and cosmeceuticals and for bioenergy purposes. Their ease of culturing and their high growth rates further promote their use as raw material for the production of specialty products. In the present paper, we focused our attention on specific glycerol-based lipid compounds, monoacylglycerols (MAGs), which displayed in our previous studies a selective cytotoxic activity against the haematological U-937 and the colon HCT-116 cancer cell lines. Here, we performed a quali/quantitative analysis of MAGs and total fatty acids (FAs) along with a profiling of the main lipid classes in a panel of 12 microalgal species, including diatoms and dinoflagellates. Our results highlight an inter- and intraspecific variability of MAG profile in the selected strains. Among them, Skeletonema marinoi (strain FE7) has emerged as the most promising source for possible biotechnological production of MAGs. Full article
(This article belongs to the Special Issue Biotechnological Applications of Marine Microalgae)
Show Figures

Figure 1

Back to TopTop