Advances of Marine-Derived Enzymes

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Marine Biotechnology Related to Drug Discovery or Production".

Deadline for manuscript submissions: 30 November 2024 | Viewed by 3132

Special Issue Editor


E-Mail Website
Guest Editor
Matís Ohf., Reykjavik, Iceland
Interests: biotechnology; genome/metagenome analysis; marine enzymes; marine polysaccharides; bioactive compounds
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,                

Marine enzymes are different from terrestrial enzymes in many ways. They have evolved specificity and affinity for marine molecules, which are often recalcitrant to terrestrial enzymes. The diverse and complex marine environments with high salinity, high pressure, low temperature, and special lighting conditions have also contributed to their specific features. In recent years, interest in marine biotechnology has increased. Marine biomass, such as seaweed, can be considered a preferable alternative to terrestrial plants for refining nutrients, bioenergy compounds, bioactive molecules, and other chemicals, as the latter feedstock is reliant on water, land, fertilizers, and pesticides, and also competes with crops that are intended for human consumption. The enzymatic refining of marine feedstock such as seaweed to added value products is, however, still rare to find on an industrial scale. There is a need for suitable and advantageous enzymatic tools. The bioprospecting of marine enzymes with industrial application potentials is therefore still of great interest.

A Special Issue on advances in marine derived enzymes is now planned for publication in the journal Marine Drugs. The focus will be on enzymes from both marine microbial and multicellular organisms. New marine enzymes, enzyme products, properties, and production technology, as well as exploitation potential in marine biotechnology will be highlighted.

Dr. Olafur Fridjonsson
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine enzymes
  • enzyme products
  • enzyme properties
  • exploitation potentials
  • marine biotechnology
  • biorefining
  • production technology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 4082 KiB  
Article
Odd-Numbered Agaro-Oligosaccharides Produced by α-Neoagaro-Oligosaccharide Hydrolase Exert Antioxidant Activity in Human Dermal Fibroblasts
by Eunyoung Jo, Navindu Dinara Gajanayaka, Minthari Sakethanika Bandara, Svini Dileepa Marasinghe, Gun-Hoo Park, Su-Jin Lee, Chulhong Oh and Youngdeuk Lee
Mar. Drugs 2024, 22(11), 495; https://doi.org/10.3390/md22110495 - 3 Nov 2024
Viewed by 681
Abstract
Agarases produce agar oligosaccharides with various structures exhibiting diverse physiological activities. α-Neoagaro-oligosaccharide hydrolase (α-NAOSH) specifically cleaves even-numbered neoagaro-oligosaccharides, producing 3,6-anhydro-l-galactose (l-AHG) and odd-numbered agaro-oligosaccharides (OAOSs). In this study, α-NAOSH from the agar-degrading marine bacterium Gilvimarinus agarilyticus JEA5 (Gaa117) was [...] Read more.
Agarases produce agar oligosaccharides with various structures exhibiting diverse physiological activities. α-Neoagaro-oligosaccharide hydrolase (α-NAOSH) specifically cleaves even-numbered neoagaro-oligosaccharides, producing 3,6-anhydro-l-galactose (l-AHG) and odd-numbered agaro-oligosaccharides (OAOSs). In this study, α-NAOSH from the agar-degrading marine bacterium Gilvimarinus agarilyticus JEA5 (Gaa117) was purified and characterized using an E. coli expression system to produce OAOSs and determine their bioactivity. Recombinant Gaa117 (rGaa117) showed maximum activity at pH 6.0 and 35 °C. rGaa117 retained >80% of its initial activity after 120 min at 30 °C. The activity was enhanced in the presence of Mn2+. Km, Vmax, and Kcat/Km values of the enzyme were 22.64 mM, 246.3 U/mg, and 15 s−1/mM, respectively. rGaa117 hydrolyzed neoagarobiose, neoagarotetraose, and neoagarohexaose, producing OAOSs that commonly contained l-AHG. Neoagarobiose and neoagarotetraose mixtures, designated NAO24, and mixtures of l-AHG and agarotriose, designated AO13, were obtained using recombinant rGaa16B (β-agarase) and rGaa117, respectively, and their antioxidant activities were compared. AO13 showed higher hydrogen peroxide-scavenging activity than NAO24 in human dermal fibroblasts in vitro because of structural differences: AOSs have d-galactose at the non-reducing end, whereas NAOSs have l-AHG. In conclusion, OAOSs exhibited high ROS-scavenging activity in H2O2-induced human dermal fibroblasts. They may be applicable in cosmetics and pharmaceuticals for prevention of skin aging. Full article
(This article belongs to the Special Issue Advances of Marine-Derived Enzymes)
Show Figures

Figure 1

14 pages, 5606 KiB  
Article
Enantioselectivity in Vanadium-Dependent Haloperoxidases of Different Marine Sources for Sulfide Oxidation to Sulfoxides
by Yun-Han Zhang, Ya-Ting Zou, Yong-Yi Zeng, Lan Liu and Bi-Shuang Chen
Mar. Drugs 2024, 22(9), 419; https://doi.org/10.3390/md22090419 - 14 Sep 2024
Viewed by 895
Abstract
This study explores the reasons behind the variations in the enantioselectivity of the sulfoxidation of methyl phenyl sulfide by marine-derived vanadium-dependent haloperoxidases (VHPOs). Twelve new VHPOs of marine organisms were overexpressed, purified, and tested for their ability to oxidize sulfide. Most of these [...] Read more.
This study explores the reasons behind the variations in the enantioselectivity of the sulfoxidation of methyl phenyl sulfide by marine-derived vanadium-dependent haloperoxidases (VHPOs). Twelve new VHPOs of marine organisms were overexpressed, purified, and tested for their ability to oxidize sulfide. Most of these marine enzymes exhibited nonenantioselective behavior, underscoring the uniqueness of AnVBPO from the brown seaweed Ascophyllum nodosum and CpVBPO from the red seaweed Corallina pilulifera, which produce (R)- and (S)-sulfoxides, respectively. The enantioselective sulfoxidation pathway is likely due to direct oxygen transfer within the VHPO active site. This was demonstrated through molecular docking and molecular dynamics simulations, which revealed differences in the positioning of sulfide within AnVBPO and CpVBPO, thus explaining their distinct enantioselectivities. Nonenantioselective VHPOs probably follow a different oxidation pathway, initiating with sulfide oxidation to form a positively charged radical. Further insights were gained from studying the catalytic effect of VO43− on H2O2-driven sulfoxidation. This research improves the understanding of VHPO-mediated sulfoxidation and aids in developing biocatalysts for sulfoxide synthesis. Full article
(This article belongs to the Special Issue Advances of Marine-Derived Enzymes)
Show Figures

Figure 1

13 pages, 2442 KiB  
Article
Purification and Characterization of a Novel Fibrinolytic Enzyme from Marine Bacterium Bacillus sp. S-3685 Isolated from the South China Sea
by Zibin Ma, Jeevithan Elango, Jianhua Hao and Wenhui Wu
Mar. Drugs 2024, 22(6), 267; https://doi.org/10.3390/md22060267 - 10 Jun 2024
Viewed by 1162
Abstract
A novel fibrinolytic enzyme, BSFE1, was isolated from the marine bacterium Bacillus sp. S-3685 (GenBank No.: KJ023685) found in the South China Sea. This enzyme, with a molecular weight of approximately 42 kDa and a specific activity of 736.4 U/mg, exhibited its highest [...] Read more.
A novel fibrinolytic enzyme, BSFE1, was isolated from the marine bacterium Bacillus sp. S-3685 (GenBank No.: KJ023685) found in the South China Sea. This enzyme, with a molecular weight of approximately 42 kDa and a specific activity of 736.4 U/mg, exhibited its highest activity at 37 °C in a phosphate buffer at pH 8.0. The fibrinolytic enzyme remained stable over a pH range of 7.5 to 10.0 and retained about 76% of its activity after being incubated at 37 °C for 2 h. The Km and Vmax values of the enzyme at 37 °C were determined to be 2.1 μM and 49.0 μmol min−1 mg−1, respectively. The fibrinolytic activity of BSFE1 was enhanced by Na+, Ba2+, K+, Co2+, Mn2+, Al3+, and Cu2+, while it was inhibited by Fe3+, Ca2+, Mg2+, Zn2+, and Fe2+. These findings indicate that the fibrinolytic enzyme isolated in this study exhibits a strong affinity for fibrin. Moreover, the enzyme we have purified demonstrates thrombolytic enzymatic activity. These characteristics make BSFE1 a promising candidate for thrombolytic therapy. In conclusion, the results obtained from this study suggest that our work holds potential in the development of agents for thrombolytic treatment. Full article
(This article belongs to the Special Issue Advances of Marine-Derived Enzymes)
Show Figures

Figure 1

Back to TopTop