From Sea to Skin: Advancements in Marine-Based Cosmeceuticals

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Marine-Derived Ingredients for Drugs, Cosmeceuticals and Nutraceuticals".

Deadline for manuscript submissions: 31 March 2025 | Viewed by 2748

Special Issue Editor


E-Mail Website
Guest Editor
Laboratoire LASEVE, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l’Université, Saguenay, QC G7H 2B1, Canada
Interests: formulation; encapsulation; cosmetics; skin; cosmeceuticals; natural products

Special Issue Information

Dear Colleagues,

The vast and diverse marine environment has long been a source of intrigue and exploration, not only for its mysteries but also for its abundant resources that hold potential for human benefit. In recent years, the field of cosmeceuticals has turned its gaze towards the sea, uncovering a wealth of marine ingredients that offer innovative solutions for skincare and beauty. This Special Issue, titled "From Sea to Skin: Advancements in Marine-Based Cosmeceuticals", seeks to delve into the emerging trends, scientific breakthroughs, and sustainable practices in the utilization of marine resources in cosmeceutical applications.

Marine organisms, from microscopic algae to the vast array of sea flora and fauna, possess unique biochemical compounds. These compounds have evolved to thrive in challenging oceanic environments, offering unparalleled advantages such as potent antioxidant properties, hydrating capabilities, and skin-rejuvenating effects. As the demand for natural and effective skincare rises, the cosmeceutical industry sees a parallel surge in interest in marine-derived ingredients. This Special Issue aims to highlight innovative approaches to extracting, formulating, and applying these marine treasures in cosmeceutical products.

We invite contributions that explore the multifaceted aspects of marine-based cosmeceuticals. Topics of interest include, but are not limited to, the discovery of novel marine compounds with skincare benefits, advancements in biotechnological methods for sustainable extraction, formulation challenges and solutions, efficacy studies, consumer trends in marine cosmeceuticals, and the ecological and ethical considerations of sourcing from the ocean.

Submissions may include original research articles, comprehensive reviews, and case studies that contribute to the understanding and advancement of marine-based cosmeceuticals. We also encourage contributions that address the gap between traditional uses of marine ingredients and modern scientific validations, providing a bridge between ancient wisdom and contemporary science.

Join us in exploring the depths of marine potential in skincare innovation.

Dr. Ripoll Lionel
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine cosmeceuticals
  • marine-derived ingredients
  • biotechnological extraction
  • algal extracts
  • oceanic bioactive compounds
  • skin-care innovation
  • antioxidant marine properties
  • marine peptides
  • ocean-derived anti-aging agents
  • seaweed-based cosmetics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 2191 KiB  
Article
The Role of Nitrate Supply in Bioactive Compound Synthesis and Antioxidant Activity in the Cultivation of Porphyra linearis (Rhodophyta, Bangiales) for Future Cosmeceutical and Bioremediation Applications
by Débora Tomazi Pereira, Nathalie Korbee, Julia Vega and Félix L. Figueroa
Mar. Drugs 2024, 22(5), 222; https://doi.org/10.3390/md22050222 - 15 May 2024
Viewed by 1216
Abstract
Porphyra sensu lato has economic importance for food and pharmaceutical industries due to its significant physiological activities resulting from its bioactive compounds (BACs). This study aimed to determine the optimal nitrate dosage required in short-term cultivation to achieve substantial BAC production. A nitrate [...] Read more.
Porphyra sensu lato has economic importance for food and pharmaceutical industries due to its significant physiological activities resulting from its bioactive compounds (BACs). This study aimed to determine the optimal nitrate dosage required in short-term cultivation to achieve substantial BAC production. A nitrate experiment using varied concentrations (0 to 6.5 mM) revealed optimal nitrate uptake at 0.5 mM in the first two days and at 3 and 5 mM in the last five days. Polyphenols and carbohydrates showed no differences between treatments, while soluble proteins peaked at 1.5 and 3 mM. Total mycosporine-like amino acids (MAAs) were highest in algae incubated at 5 and 6.5 mM, and the highest antioxidant activity was observed in the 5 mM, potentially related to the MAAs amount. Total carbon and sulfur did not differ between treatments, while nitrogen decreased at higher nitrate. This discovery highlights the nuanced role of nitrate in algal physiology, suggesting that biological and chemical responses to nitrate supplementation can optimize an organism’s health and its commercially significant bioactive potential. Furthermore, given its ability to absorb high doses of nitrate, this alga can be cultivated in eutrophic zones or even in out-/indoor tanks, becoming an excellent option for integrated multi-trophic aquaculture (IMTA) and bioremediation. Full article
(This article belongs to the Special Issue From Sea to Skin: Advancements in Marine-Based Cosmeceuticals)
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 619 KiB  
Review
Investigating the Anti-Inflammatory Activity of Various Brown Algae Species
by Selin Ersoydan and Thomas Rustemeyer
Mar. Drugs 2024, 22(10), 457; https://doi.org/10.3390/md22100457 - 5 Oct 2024
Viewed by 1250
Abstract
This literature review investigated the anti-inflammatory properties of brown algae, emphasizing their potential for dermatological applications. Due to the limitations and side effects associated with corticosteroids and immunomodulators, interest has been growing in harnessing therapeutic qualities from natural products as alternatives to traditional [...] Read more.
This literature review investigated the anti-inflammatory properties of brown algae, emphasizing their potential for dermatological applications. Due to the limitations and side effects associated with corticosteroids and immunomodulators, interest has been growing in harnessing therapeutic qualities from natural products as alternatives to traditional treatments for skin inflammation. This review explored the bioactive compounds in brown algae, specifically looking into two bioactive compounds, namely, fucoidans and phlorotannins, which are widely known to exhibit anti-inflammatory properties. This review synthesized the findings from various studies, highlighting how these compounds can mitigate inflammation by mechanisms such as reducing oxidative stress, inhibiting protein denaturation, modulating immune responses, and targeting inflammatory pathways, particularly in conditions like atopic dermatitis. The findings revealed species-specific variations influenced by the molecular weight and sulphate content. Challenges related to skin permeability were addressed, highlighting the potential of nanoformulations and penetration enhancers to improve delivery. While the in vivo results using animal models provided positive results, further clinical trials are necessary to confirm these outcomes in humans. This review concludes that brown algae hold substantial promise for developing new dermatological treatments and encourages further research to optimize extraction methods, understand the molecular mechanisms, and address practical challenges such as sustainability and regulatory compliance. This review contributes to the growing body of evidence supporting the integration of marine-derived compounds into therapeutic applications for inflammatory skin diseases. Full article
(This article belongs to the Special Issue From Sea to Skin: Advancements in Marine-Based Cosmeceuticals)
Show Figures

Figure 1

Back to TopTop