The Life of Materials at High Temperatures
A special issue of Materials (ISSN 1996-1944).
Deadline for manuscript submissions: closed (15 May 2017) | Viewed by 46208
Special Issue Editor
Special Issue Information
Dear Colleagues,
With many countries, such as the UK and the USA, currently facing a potential future mismatch between energy supply and demand, there is currently heightened interest in techniques that can accurately life critical components operating at high temperatures. Such techniques can help alleviate potential energy gaps in a number of different ways:
- By speeding up the time required for new experimental alloys to be considered as safe for use in new more efficient power plants designed to operate at higher temperatures.
- By quantifying the risks associated with extending the service life of existing power plants beyond their original design lives.
- By quantifying the tendency to under estimate safe life due to oxidation and other failure mechanisms and thereby extending the safe service life of existing power plants.
Whilst creep damage is temperature specific, other mechanisms, such a fatigue, surface oxidation and internal corrosion, interact with creep to have significant effects on high temperature damage accumulation and many different approaches are used to life materials at high temperature. At one end of the spectrum there are the fundamental mechanism based models that describe high temperature behaviour in terms of specific phenomenon and rely on microscopic parameters that are sometimes difficult to quantify. At the other end of the spectrum are the empirical models that can provide deterministic and probabilistic life assessments by extrapolation from short-term data sets on macroscopic properties such as strain and rupture time. In between these, are the models based on continuum damage mechanics (CDM) that relate strain to measurable external and internal variables. Often these approaches are combined, for example, when constitutive models are incorporated into finite element and other numerical models to predict the creep strain of complex components or the deformation of miniature disc specimens. Finally, there is increasing demand for non-destructive techniques and miniature specimen techniques (such as the small punch test) that can determine the remaining life of in service components.
It is my pleasure to invite you to submit a manuscript related to the lifeing of any material in any high temperature application for this Special Issue.
Assoc. Prof. Dr. Mark Evans
Guest Editor
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- Failure mechanisms (e.g. Creep)
- Life Assessment techniques
- High temperature materials
- Damage/degradation
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.