Recent Advances in Corrosion and Protection of Metallic Materials

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Corrosion and Protection".

Deadline for manuscript submissions: 15 March 2025 | Viewed by 7236

Special Issue Editor


E-Mail Website
Guest Editor
School of Materials Science & Engineering, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
Interests: coatings; energy storage materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Metals is launching a new Special Issue entitled “Recent Advances in Corrosion and Protection of Metallic Materials.” The Special Issue will provide a platform for presenting the recent experimental and theoretical advances in the field of the corrosion and protection of metallic materials. Corrosion of metals is a common phenomenon. Whether in the traditional field of metal materials or in emerging fields such as electronic packaging, metal batteries, and high entropy alloys, corrosion and protection of metals are particularly important.

We invite you to contribute an original or review article to this Special Issue.

Dr. Changdong Gu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metal anode
  • Li metal battery
  • Zn ion battery
  • magnesium ion battery
  • thin films and coatings
  • high entropy alloys
  • magnesium alloys
  • aluminium alloy
  • corrosion
  • high entropy alloys
  • coating and films
  • surface modification

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 6371 KiB  
Article
Ruta graveolens Plant Extract as a Green Corrosion Inhibitor for 304 SS in 1 M HCl: Experimental and Theoretical Studies
by Sonia Estefanía Hernández-Sánchez, Juan Pablo Flores-De los Rios, Humberto Alejandro Monreal-Romero, Norma Rosario Flores-Holguin, Luz María Rodríguez-Valdez, Mario Sánchez-Carrillo, Anabel D. Delgado and Jose G. Chacón-Nava
Metals 2024, 14(11), 1267; https://doi.org/10.3390/met14111267 - 8 Nov 2024
Viewed by 506
Abstract
This study evaluated the corrosion inhibitory effects of Ruta graveolens leaf extract for 304 stainless steel in 1 M HCl. The analysis of the leaf extract using HPLC indicated that the primary compounds present in the leaf extract were rutin, caffeic acid, p-coumaric [...] Read more.
This study evaluated the corrosion inhibitory effects of Ruta graveolens leaf extract for 304 stainless steel in 1 M HCl. The analysis of the leaf extract using HPLC indicated that the primary compounds present in the leaf extract were rutin, caffeic acid, p-coumaric acid, and apigenin. The inhibition efficiency (IE%) of the extract was studied using weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and computational simulation (density functional theory, DFT). The effects of the inhibitor concentration and solution temperature were investigated. The results indicated that the IE% increased for increasing concentrations of the extract, while the reverse was true with increasing temperatures. At 25 °C and a 600 ppm extract concentration, the results indicated a maximum inhibition efficiency of 95%, 98%, and 96% by weight loss, potentiodynamic polarization, and EIS techniques, respectively. SEM observations showed a significant change in the surface morphology of the 304 SS with and without the addition of the inhibitor compound. At all temperatures, the adsorption of the inhibitor components onto the 304 SS surface was found to follow the Langmuir isotherm model, and the inhibition process was governed by physical adsorption. Furthermore, chemical interactions between the inhibitor and the 304 SS steel surface were elucidated via density functional theory (DFT) calculations. Full article
(This article belongs to the Special Issue Recent Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

17 pages, 15801 KiB  
Article
Influence of Hot Rolling on Microstructure, Corrosion and Mechanical Properties of Mg–Zn–Mn–Ca Alloy
by Stanislav O. Rogachev, Viacheslav E. Bazhenov, Vasiliy A. Bautin, Anna V. Li, Sofia V. Plegunova, Denis V. Ten, Viacheslav V. Yushchuk, Alexander A. Komissarov and Kwang Seon Shin
Metals 2024, 14(11), 1249; https://doi.org/10.3390/met14111249 - 4 Nov 2024
Viewed by 564
Abstract
The effect of hot rolling on the microstructure, mechanical, and corrosion properties of the magnesium alloy 96 wt% Mg–2.3 wt% Zn–0.7 wt% Ca–1 wt% Mn was studied. After heat treatment, the original plates of an as-cast alloy were rolled from a 7 mm [...] Read more.
The effect of hot rolling on the microstructure, mechanical, and corrosion properties of the magnesium alloy 96 wt% Mg–2.3 wt% Zn–0.7 wt% Ca–1 wt% Mn was studied. After heat treatment, the original plates of an as-cast alloy were rolled from a 7 mm thickness to a 0.2 mm thickness at two temperatures—300 or 400 °C. It has been established that increasing the rolling temperature from 300 to 400 °C increases the fraction of recrystallized grains in the microstructure and after rolling at 400 °C, the microstructure is fully recrystallized. The best strength–ductility balance of the alloy was obtained after rolling at 300 °C, with a high total percentage reduction of 93–97%: the yield stress, the ultimate tensile strength, and the elongation averaged at 285 MPa, 310 MPa, and 5%, respectively. The alloy after rolling, annealed at 400 °C, shows improved ductility but lower strength: the yield stress, the ultimate tensile strength, and the elongation were 200 MPa, 260 MPa, and 17%, respectively. The strong dependence of corrosion resistance on respect to rolling direction is observed, which can be reduced after heat treatment. The as-rolled alloy and the heat-treated alloy had low corrosion rates in Hanks’ solution of 0.54 and 0.19 mm/year, respectively. Full article
(This article belongs to the Special Issue Recent Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

27 pages, 8922 KiB  
Article
Laboratory-Scale Implementation of Standardized Reconstituted Geothermal Water for Electrochemical Investigations of Carbon Steel Corrosion
by Stephanie Betelu, Chahinez Helali and Ioannis Ignatiadis
Metals 2024, 14(11), 1216; https://doi.org/10.3390/met14111216 - 25 Oct 2024
Viewed by 510
Abstract
Currently, the demand for heat production by geothermal energy is increasingly strong amid the controversy surrounding non-renewable forms of energy. In France, the Dogger aquifer in the Paris Basin (DAPB) produces saline geothermal waters (GWs) that are hot (70–85 °C), anaerobic, and slightly [...] Read more.
Currently, the demand for heat production by geothermal energy is increasingly strong amid the controversy surrounding non-renewable forms of energy. In France, the Dogger aquifer in the Paris Basin (DAPB) produces saline geothermal waters (GWs) that are hot (70–85 °C), anaerobic, and slightly acidic (pH 6.1–6.4), and are characterized mainly by the presence of Cl, SO42−, CO2/HCO3, and H2S/HS. These GWs are corrosive, while the well casings used are carbon steel. GWs have been continuously treated since the 1990s by corrosion inhibitors at the bottom of production wells to reduce water–steel interactions and scaling issues. Electrochemical experiments to optimize inhibitors were carried out on site, protected from the ambient atmosphere, with actual geothermal water, using water tapping at the wellhead. Currently, carbon steel corrosion/scaling, corrosion inhibition phenomenology, and kinetics evaluation remain important challenges. These issues are, of course, linked to the durability of installations. The novelty of our work consists of our validation of a modus operandi that properly reproduces, at the laboratory scale, operating conditions similar to those encountered on the types of geothermal installations. Particular attention was paid to characterizing waters and gases from 13 production wellheads that were modelled with PhreeqC® Version 3 hydrogeochemical software and the Thermoddem thermodynamic database for implementing standardized reconstituted geothermal water (SRGW), a well-balanced water representative of the major elements and dissolved gases of actual DAPB geothermal waters. The developed electrochemical setup enabled us to analyze corrosion mechanisms such as those observed on site and to investigate corrosion inhibition using petrosourced and biosourced inhibitors. The modus operandi constitutes a reference for further investigations, at the laboratory scale, of corrosion inhibition. These investigations may include screening and optimizing the formulas of petrosourced and biosourced inhibitors for use in DAPB waters. Full article
(This article belongs to the Special Issue Recent Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

17 pages, 8181 KiB  
Article
Frequency–Time Domain Analysis Based on Electrochemical Noise of Dual-Phase (DP) and Ferrite–Bainite (FB) Steels in Chloride Solutions for Automotive Applications
by Facundo Almeraya-Calderón, Marvin Montoya-Rangel, Demetrio Nieves-Mendoza, Jesús Manuel Jáquez-Muñoz, Miguel Angel Baltazar-Zamora, Laura Landa-Ruiz, Maria Lara-Banda, Erick Maldonado-Bandala, Francisco Estupiñan-Lopez and Citlalli Gaona-Tiburcio
Metals 2024, 14(11), 1208; https://doi.org/10.3390/met14111208 - 23 Oct 2024
Viewed by 512
Abstract
The automotive industry uses high-strength (HS), low-alloy (HSLA) steels and advanced high-strength steels (AHSSs) to manufacture front and rear rails and safety posts, as well as the car body, suspension, and chassis components of cars. These steels can be exposed to corrosive environments, [...] Read more.
The automotive industry uses high-strength (HS), low-alloy (HSLA) steels and advanced high-strength steels (AHSSs) to manufacture front and rear rails and safety posts, as well as the car body, suspension, and chassis components of cars. These steels can be exposed to corrosive environments, such as in countries where de-icing salts are used. This research aims to characterize the corrosion behavior of AHSSs based on electrochemical noise (EN) [dual-phase (DP) and ferrite–bainite (FB)]. At room temperature, the steels were immersed in NaCl, CaCl2, and MgCl2 solutions and were studied by frequency–time domain analysis using wavelet decomposition, Hilbert–Huang analysis, and recurrence plots (RPs) related to the corrosion process and noise impedance (Zn). Optical microscopy (OM) was used to observe the microstructure of the tested samples. The results generally indicated that the main corrosion process is related to uniform corrosion. The corrosion behavior of AHSSs exposed to a NaCl solution could be related to the morphology of the phase constituents that are exposed to solutions with chlorides. The Zn results showed that DP780 presented a higher corrosion resistance with 918 Ω·cm2; meanwhile, FB780 presented 409 Ω·cm2 when exposed to NaCl. Also, the corrosion mechanism of materials begins with a localized corrosion process spreading to all the surfaces, generating a uniform corrosion process after some exposition time. Full article
(This article belongs to the Special Issue Recent Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Graphical abstract

28 pages, 6905 KiB  
Article
Corrosion Behaviour of Heat-Treated Cold Spray Nickel Chromium/Chromium Carbides
by Cedric Tan, Kannoorpatti Krishnan and Naveen Kumar Elumalai
Metals 2024, 14(10), 1153; https://doi.org/10.3390/met14101153 - 10 Oct 2024
Viewed by 614
Abstract
Chromium carbide powder agglomerated with nickel/chrome was deposited using a cold spray process onto a mild steel substrate. The deposits were heat-treated at 650 °C and 950 °C in ambient conditions to reduce porosity and improve adhesion between powder particles. The corrosion behaviour [...] Read more.
Chromium carbide powder agglomerated with nickel/chrome was deposited using a cold spray process onto a mild steel substrate. The deposits were heat-treated at 650 °C and 950 °C in ambient conditions to reduce porosity and improve adhesion between powder particles. The corrosion behaviour of these cold-sprayed materials was studied in artificial seawater conditions using electrochemical techniques. Heat treatment at 650 °C was found to best improve corrosion resistance, while the 950 °C treatment performed better than the as-sprayed condition but lower than the 650 °C sample. Microstructural analysis revealed complex phase transformations and structural refinements with increasing heat treatment temperature. The crystallite size of both Cr3C2 and NiCr phases decreased, while microstrain and dislocation density increased due to heat treatment. The formation of and subsequent reduction in Cr23C6 content indicated a complex sequence of carbide dissolution, transformation, and precipitation processes. The 650 °C heat-treated sample demonstrated superior corrosion resistance, evidenced by the highest corrosion potential, lowest passive current, and largest charge transfer resistance. This enhanced performance was attributed to the formation of a more stable and protective passive film, optimal carbide dissolution, and a homogeneous microstructure. Meanwhile, the 950 °C treatment led to excessive carbide dissolution and formed increased interfaces between the carbide and matrix. Mechanical property changes were also observed, with carbide hardness significantly decreasing after corrosion testing. These findings highlight the critical role of controlled heat treatment in optimising the performance of cold-sprayed Cr3C2-NiCr coatings, demonstrating that achieving superior corrosion resistance requires a delicate balance between microstructural refinement, phase transformations, and preservation of coating integrity. Full article
(This article belongs to the Special Issue Recent Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

20 pages, 7273 KiB  
Article
Functionalisation of the Aluminium Surface by CuCl2 Chemical Etching and Perfluoro Silane Grafting: Enhanced Corrosion Protection and Improved Anti-Icing Behaviour
by Peter Rodič, Matic Može, Iztok Golobič and Ingrid Milošev
Metals 2024, 14(10), 1118; https://doi.org/10.3390/met14101118 - 1 Oct 2024
Viewed by 724
Abstract
This study aimed to prepare a facile hierarchical aluminium surface using a two-step process consisting of chemical etching in selected concentrations of CuCl2 solution and surface grafting through immersion in an ethanol solution containing 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane. The goal was to [...] Read more.
This study aimed to prepare a facile hierarchical aluminium surface using a two-step process consisting of chemical etching in selected concentrations of CuCl2 solution and surface grafting through immersion in an ethanol solution containing 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane. The goal was to achieve superhydrophobic characteristics on the aluminium surface, including enhanced corrosion resistance, efficient self-cleaning ability, and improved anti-icing performance. The surface characterisation of the untreated aluminium and treated in CuCl2 solutions of different concentrations was performed using contact profilometry, optical tensiometry, and scanning electron microscopy coupled with energy dispersive spectroscopy to determine the surface topography, wettability, morphology, and surface composition. The corrosion properties were evaluated using potentiodynamic measurements in simulated acid rain solution and salt-spray test according to ASTM B117-22. In addition, self-cleaning and anti-icing tests were performed on superhydrophobic surfaces prepared under optimal conditions. The results showed that the nano-/micro-structured etched aluminium surface with an optimal 0.5 M concentration of CuCl2 grafted with a perfluoroalkyl silane film achieved superhydrophobic characteristics, with water droplets exhibiting efficient corrosion protection, self-cleaning ability, and improved anti-icing performance with decreased ice nucleation temperature and up to 545% increased freezing delay. Full article
(This article belongs to the Special Issue Recent Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

12 pages, 11805 KiB  
Article
Stability Investigation of TiB2 Coatings in Molten Zinc Fabricated by Electrophoretic Deposition in Molten Salts
by Jialie Liu, Junjie Xu, Chuntao Ge, Jie Pang, Weiliang Jin, Geir Martin Haarberg and Saijun Xiao
Metals 2024, 14(9), 981; https://doi.org/10.3390/met14090981 - 29 Aug 2024
Viewed by 564
Abstract
To enhance the anticorrosion properties of molybdenum metal in liquid zinc, this study successfully fabricated TiB2 coatings on molybdenum substrates via the molten salt electrophoretic deposition technique and investigated their corrosion resistance in molten zinc. Initially, TiB2 nanoparticles with a size [...] Read more.
To enhance the anticorrosion properties of molybdenum metal in liquid zinc, this study successfully fabricated TiB2 coatings on molybdenum substrates via the molten salt electrophoretic deposition technique and investigated their corrosion resistance in molten zinc. Initially, TiB2 nanoparticles with a size ranging from 50 to 150 nm were synthesized using the borothermal reduction method in a molten NaF-AlF3 bath at 1238 K. Subsequently, the electrophoretic deposition experiment was conducted under a cell voltage of 1.2 V (i.e., 0.6 V/cm) for a duration of 1 h in the melt containing TiB2 nanoparticles, resulting in a uniform, continuous, and compact TiB2 coating (35 μm thick) on the molybdenum substrate. Moreover, the corrosion resistance of the TiB2-coated molybdenum metal to molten zinc was tested through continuous immersion. After 120 h of immersion, the TiB2 coating showed no signs of cracking or peeling off, successfully protecting the molybdenum metal substrate from corrosion by molten zinc. The results confirm that the molten salt electrophoretic deposition technique can be used to prepare TiB2 coatings with good resistance to molten zinc corrosion on molybdenum metal. Full article
(This article belongs to the Special Issue Recent Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

10 pages, 6224 KiB  
Article
Phytic-Acid-Modified Copper Foil as a Current Collector for Lithium-Ion Batteries
by Mingtao Gan, Mengjun Zhu, Jiangping Tu, Xiuli Wang and Changdong Gu
Metals 2024, 14(2), 247; https://doi.org/10.3390/met14020247 - 18 Feb 2024
Cited by 1 | Viewed by 2424
Abstract
Electrolytic copper foil is ideal for use in the anode current collectors of lithium-ion batteries (LIBs) because of its abundant reserves, good electrical conductivity, and soft texture. However, electrolytic copper foil is prone to corrosion in electrolytes and weak bonding to the anode [...] Read more.
Electrolytic copper foil is ideal for use in the anode current collectors of lithium-ion batteries (LIBs) because of its abundant reserves, good electrical conductivity, and soft texture. However, electrolytic copper foil is prone to corrosion in electrolytes and weak bonding to the anode substance. Surface modification of copper foil is considered an effective method of improving the overall electrochemical performance of LIBs. In this study, a 5 nm thickness phytic acid (PA)-based film is constructed on electrolytic copper foil using a fast electrodeposition process (about 10 s). PA-treated copper foil (PA-Cu) displays an improved corrosion resistance in electrolytes because of a strong complexation between the PA and copper. It is found that PA-treated copper foil also bonds better with graphite particles compared with pristine copper foil. LIBs with PA-Cu foils as their current collectors exhibit enhanced cycling stability, improved capacity retention, and superior rate performance at both low and high current densities. Our study offers a novel avenue for the development of high-performance electrode current collector materials for LIBs. Full article
(This article belongs to the Special Issue Recent Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

Back to TopTop