Localized Corrosion of Metals and Alloys
A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Corrosion and Protection".
Deadline for manuscript submissions: closed (31 October 2020) | Viewed by 27836
Special Issue Editors
Interests: mechanically assisted corrosion; localised corrosion; environmentally-assisted cracking
Special Issues, Collections and Topics in MDPI journals
Interests: metallic materials; structural and functional properties; structure–property correlations; advanced nanoscale materials characterization; nanoscale mechanical testing; environmentally assisted fracture and fatigue; in situ testing; stress corrosion cracking; corrosion; hydrogen embrittlement
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear Colleagues,
As stated by Prof. Macdonald, “Humankind has been able to develop a metals-based civilization primarily because the reactive metals (Fe, Ni, Cr, Al, Ti, Zr, etc.) exhibit extraordinary kinetic stabilities in oxidizing environments” [1]. However, the so-called passive metals and corrosion resistant alloys are susceptible to localized attack in the form of, for example, pitting and crevice corrosion, when exposed to certain environments, often containing anions of strong acids such as chlorides and bromides. Moreover, many authors have postulated that pitting corrosion is a prerequisite for environmentally-assisted cracking mechanisms such as stress corrosion cracking and sulfide stress cracking [2].
Localized corrosion is one of the most pervasive forms of attack impacting virtually all engineering metals and alloys that derive their resistance from the spontaneous development of a passive layer. Localized corrosion remains as a recurrent, costly, and difficult-to-detect phenomenon affecting a range of materials—to mention a few examples—from the plenitude of stainless steels, to nickel-based alloys, and non-ferrous systems based on, for example, aluminum, titanium, and zirconium. Localized corrosion is commonplace in diverse industry segments such as the resources, power, aerospace, water, maritime, and biomedical sectors.
In the last couple of years, there has been a revived interest, primarily as a result of the joint efforts of Frankel, Scully, and collaborators, in fundamental research aimed at linking the various critical factors and models that consider both passive film breakdown and pit stabilization. [3] Nevertheless, there are still crucial aspects of the problem, especially around the critical localized corrosion temperatures and induction times, that are yet to be understood. Presently, simple, yet foundational engineering questions, such as “what is the maximum allowable service temperature to minimize localized corrosion risks?”, or, “if a metal or alloy is exposed to an environment known to cause localized corrosion (e.g., some stainless steels in natural seawater), how long does an operator have before localized corrosion starts?”, cannot be answered.
The goal of this Special Issue is to present state-of-the-art research on passivity and localized corrosion phenomena, with emphasis on the interplay between microstructure and performance. Research linking localized and mechanically assisted corrosion (e.g., stress corrosion cracking, fretting corrosion, etc.) is also encouraged. We welcome original research articles, theoretical and modeling studies, historical failure investigations, and review papers aimed at pushing the frontiers of corrosion science and engineering. Articles focused on issues affecting the oil and gas, mining, nuclear, defense, automotive, infrastructure, and biomedical industries are of particular interest.
References
- Macdonald, D.D. Passivity—The key to our metals-based civilization. Pure Appl. Chem. 1999, 71, 951–978.
- Iannuzzi, M.; Barnoush, A.; Johnsen, R. Materials and corrosion trends in offshore and subsea oil and gas production. npj Mater. Degrad. 2017, 1, 1–11.
- Frankel, G.S.; Li, T.; Scully, J.R. Perspective—Localized corrosion: passive film breakdown vs pit growth stability. Electrochem. Soc. 2017, 164, C180–C181.
Prof. Dr. Mariano Iannuzzi
Prof. Dr. Afrooz Barnoush
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- Localized corrosion
- Stress corrosion cracking
- Corrosion resistant alloys
- Aluminum
- Titanium
- Biomedical
- Oil and gas
- Nuclear
- Microstructure
- Materials selection
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.