Micro/Nanostructures in Sensors and Actuators, 2nd Edition

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "A:Physics".

Deadline for manuscript submissions: 31 March 2025 | Viewed by 1955

Special Issue Editors


E-Mail Website
Guest Editor
School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
Interests: micro/nano fabrication; micro/nanofluidics; electrokinetics; BioMEMS; biosensor
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
Interests: micro/nano fabrication; BioMEMS; micro/nanosensors
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

With the rapid development of micro- and nano-scale manufacturing technology and material science, sensors and actuators have been miniaturized and integrated into microsystems, especially for wearable or implantable devices. Micro/nanostructures in sensors and actuators leverage unique micro- and nano-scale phenomena that are significantly different from those in the macro-scale world. These micro/nanostructures have several merits that enable rapid, accurate, and robust analysis and control. Accordingly, this Special Issue seeks to showcase research papers and review articles that focus on (1) novel methodological developments in micro/nano structures used for sensors and actuators; (2) novel designs, fabrication, and applications of sensors and actuators (e.g., micro/nanofluidic sensors, wearable or implantable sensors and actuators, etc.).

We look forward to receiving your submissions!

Prof. Dr. Cong Wang
Prof. Dr. Shulan Jiang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • micro/nano fabrication
  • micro/nano structure
  • sensors and actuators
  • MEMS
  • BioMEMS

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 1269 KiB  
Article
Electrostatic MEMS Two-Dimensional Scanning Micromirrors Integrated with Piezoresistive Sensors
by Yameng Shan, Lei Qian, Kaixuan He, Bo Chen, Kewei Wang, Wenchao Li and Wenjiang Shen
Micromachines 2024, 15(12), 1421; https://doi.org/10.3390/mi15121421 - 26 Nov 2024
Viewed by 309
Abstract
The MEMS scanning micromirror requires angle sensors to provide real-time angle feedback during operation, ensuring a stable and accurate deflection of the micromirror. This paper proposes a method for integrating piezoresistive sensors on the torsion axis of electrostatic MEMS micromirrors to detect the [...] Read more.
The MEMS scanning micromirror requires angle sensors to provide real-time angle feedback during operation, ensuring a stable and accurate deflection of the micromirror. This paper proposes a method for integrating piezoresistive sensors on the torsion axis of electrostatic MEMS micromirrors to detect the deflection angle. The design uses a multi-layer bonding process to realize a vertical comb-driven structure. The device structure is designed as a double-layer structure, in which the top layer is the ground layer and integrates with piezoresistive sensor. This approach avoids crosstalk between the applied drive voltage and the piezoresistive sensor. This design also optimizes the sensor’s size, improving sensitivity. A MEMS two-dimensional (2D) scanning micromirror with a 1 mm mirror diameter was designed and fabricated. The test results indicated that, in a vacuum environment, the torsional resonance frequencies of the micromirror’s fast axis and slow axis were 17.68 kHz and 2.225 kHz, respectively. When driving voltages of 33 V and 40 V were applied to the fast axis and slow axis of the micromirror, the corresponding optical scanning angles were 55° and 45°, respectively. The piezoresistive sensor effectively detects the micromirror’s deflection state, and optimizing the sensor’s size achieved a sensitivity of 13.87 mV/V/°. The output voltage of the piezoresistive sensor shows a good linear relationship with the micromirror’s deflection angle, enabling closed-loop feedback control of the electrostatic MEMS micromirror. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
14 pages, 2526 KiB  
Article
A Novel Nano-Spherical Tip for Improving Precision in Elastic Modulus Measurements of Polymer Materials via Atomic Force Microscopy
by Tianyu Fu, Paul C. Uzoma, Xiaolei Ding, Pengyuan Wu, Oleksiy Penkov and Huan Hu
Micromachines 2024, 15(9), 1175; https://doi.org/10.3390/mi15091175 - 22 Sep 2024
Viewed by 1442
Abstract
Micro-nano-scale mechanical properties are vital for engineering and biological materials. The elastic modulus is generally measured by processing the force–indentation curves obtained by atomic force microscopy (AFM). However, the measurement precision is largely affected by tip shape, tip wear, sample morphology, and the [...] Read more.
Micro-nano-scale mechanical properties are vital for engineering and biological materials. The elastic modulus is generally measured by processing the force–indentation curves obtained by atomic force microscopy (AFM). However, the measurement precision is largely affected by tip shape, tip wear, sample morphology, and the contact model. In such research, it has been found that the radius of the sharp tip increases due to wear during contact scanning, affecting elastic modulus calculations. For flat-ended tips, it is difficult to identify the contact condition, leading to inaccurate results. Our research team has invented a nano-spherical tip, obtained by implanting focused helium ions into a silicon microcantilever, causing it to expand into a silicon nanosphere. This nano-spherical tip has the advantages of sub-micro size and a smooth spherical surface. Comparative tests of the elastic modulus measurement were conducted on polytetrafluoroethylene (PTFE) and polypropylene (PP) using these three tips. Overall, the experimental results show that our nano-spherical tip with a consistent tip radius, symmetrical geometric shape, and resistance to wear and contamination can improve precision in elastic modulus measurements of polymer materials. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

Back to TopTop