Strengthening Mucosal Immunity and the Intestinal Microbiome with Probiotics and Prebiotics

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Gut Microbiota".

Deadline for manuscript submissions: closed (20 November 2019) | Viewed by 39521

Special Issue Editor


E-Mail Website
Guest Editor
Discipline of Pharmacology, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
Interests: clinical epidemiology; the human microbiome; probiotics and prebiotics and mood disorders; cellular redox potential and pro-oxidant signaling systems
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The commensal microbial cohort functions to develop and establish the host’s mucosal and cell-mediated immune systems in order to promote immunological and metabolic tolerance. Probiotics and prebiotics have been advanced to have immunomodulating properties by positively influencing the intestinal microbial cohort while simultaneously diminishing the influence and activity of pathogenic intestinal bacteria such as Klebsiella pneumoniae and Clostridia perfringens. Specifically, probiotics and prebiotics are reported to have positive immuno-equilibrium restorative effects. An increasingly supported posit is that bacteria such as those from the probiotic genera Bifidobacteria and Lactobacilli can participate in immune regulation, and do so by inducing regulatory T cells. Reports of beneficial immune-modulatory effects by probiotic bacteria are elicited across several molecules, which include microbial cell walls, peptidoglycan, and exopolysaccharides, through interactions with specific host cell receptors. Whereas relative to prebiotics, these are compounds portrayed to encourage the intestinal microbiome’s production of short-chain fatty acids such as butyrate, which have a central role in intestinal immunogenicity. Moreover, bacteriophages may display an additional effective local protective control mechanism for the intestinal barrier against commensal pathogenic bacteria.

Prof. Luis Vitetta
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Mucosal Immunity
  • Cell Mediated Immunity
  • Immunological Tolerance
  • Probiotics
  • Prebiotics
  • Lactobacilli
  • Bifidobacteria
  • Intestinal Microbiome
  • Bacteriophages

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 1835 KiB  
Article
Aflatoxins: Occurrence, Exposure, and Binding to Lactobacillus Species from the Gut Microbiota of Rural Ugandan Children
by Alex Paul Wacoo, Prudence Atukunda, Grace Muhoozi, Martin Braster, Marijke Wagner, Tim J van den Broek, Wilbert Sybesma, Ane C. Westerberg, Per Ole Iversen and Remco Kort
Microorganisms 2020, 8(3), 347; https://doi.org/10.3390/microorganisms8030347 - 29 Feb 2020
Cited by 18 | Viewed by 5445
Abstract
Chronic exposure of children in sub-Saharan Africa to aflatoxins has been associated with low birth weight, stunted growth, immune suppression, and liver function damage. Lactobacillus species have been shown to reduce aflatoxin contamination during the process of food fermentation. Twenty-three Lactobacillus strains [...] Read more.
Chronic exposure of children in sub-Saharan Africa to aflatoxins has been associated with low birth weight, stunted growth, immune suppression, and liver function damage. Lactobacillus species have been shown to reduce aflatoxin contamination during the process of food fermentation. Twenty-three Lactobacillus strains were isolated from fecal samples obtained from a cohort of rural Ugandan children at the age of 54 to 60 months, typed by 16S rRNA gene sequencing, and characterized in terms of their ability to bind aflatoxin B1 in vitro. Evidence for chronic exposure of these children to aflatoxin B1 in the study area was obtained by analysis of local foods (maize flour and peanuts), followed by the identification of the breakdown product aflatoxin M1 in their urine samples. Surprisingly, Lactobacillus in the gut microbiota of 140 children from the same cohort at 24 and 36 months showed the highest positive correlation coefficient with stunting among all bacterial genera identified in the stool samples. This correlation was interpreted to be associated with dietary changes from breastfeeding to plant-based solid foods that pose an additional risk for aflatoxin contamination, on one hand, and lead to increased intake of Lactobacillus species on the other. Full article
Show Figures

Figure 1

16 pages, 2589 KiB  
Article
Oligosaccharides from Palm Kernel Cake Enhances Adherence Inhibition and Intracellular Clearance of Salmonella enterica Serovar Enteritidis In Vitro
by Rui Qing Foo, Mohammad Faseleh Jahromi, Wei Li Chen, Syahida Ahmad, Kok Song Lai, Zulkifli Idrus and Juan Boo Liang
Microorganisms 2020, 8(2), 255; https://doi.org/10.3390/microorganisms8020255 - 14 Feb 2020
Cited by 5 | Viewed by 3663
Abstract
Salmonella enterica serovar (ser.) Enteritidis (S. Enteritidis) is a foodborne pathogen often associated with contaminated poultry products. This study evaluated the anti-adherence and intracellular clearance capability of oligosaccharides extracted from palm kernel cake (PKC), a by-product of the palm oil industry, and [...] Read more.
Salmonella enterica serovar (ser.) Enteritidis (S. Enteritidis) is a foodborne pathogen often associated with contaminated poultry products. This study evaluated the anti-adherence and intracellular clearance capability of oligosaccharides extracted from palm kernel cake (PKC), a by-product of the palm oil industry, and compared its efficacy with commercial prebiotics— fructooligosaccharide (FOS) and mannanoligosaccharide (MOS)—against S. Enteritidis in vitro. Based on the degree of polymerization (DP), PKC oligosaccharides were further divided into ‘Small’ (DP ≤ 6) and ‘Big’ (DP > 6) fractions. Results showed that the Small and Big PKC fractions were able to reduce (p < 0.05) S. Enteritidis adherence to Cancer coli-2 (Caco-2) cells at 0.1 mg/ mL while MOS and FOS showed significant reduction at 1.0 mg/mL and 10.0 mg/mL, respectively. In terms of S. Enteritidis clearance, oligosaccharide-treated macrophages showed better S. Enteritidis clearance over time at 50 µg/mL for Small, Big and MOS, while FOS required a concentration of 500 µg/mL for a similar effect. This data highlights that oligosaccharides from PKC, particularly those of lower DP, were more effective than MOS and FOS at reducing S. Enteritidis adherence and enhancing S. Enteritidis clearance in a cell culture model. Full article
Show Figures

Graphical abstract

23 pages, 906 KiB  
Article
Synergistic Effects of Probiotics and Phytobiotics on the Intestinal Microbiota in Young Broiler Chicken
by Hao Ren, Wilfried Vahjen, Temesgen Dadi, Eva-Maria Saliu, Farshad Goodarzi Boroojeni and Jürgen Zentek
Microorganisms 2019, 7(12), 684; https://doi.org/10.3390/microorganisms7120684 - 11 Dec 2019
Cited by 63 | Viewed by 6522
Abstract
Probiotics and phytobiotics have been studied as in-feed antibiotic alternatives for decades, yet there are no studies on their possible symbiotic effects. In the present study, newly hatched chickens were fed with feeds supplemented either with host-specific Lactobacillus strains (L. agilis and [...] Read more.
Probiotics and phytobiotics have been studied as in-feed antibiotic alternatives for decades, yet there are no studies on their possible symbiotic effects. In the present study, newly hatched chickens were fed with feeds supplemented either with host-specific Lactobacillus strains (L. agilis and L. salivarius), commercial phytobiotics, or combinations of both. After 13 days of life, crops and caecums were analyzed for bacterial composition (16S rDNA sequencing, qPCR) and activity (bacterial metabolites). Crop and caecum samples were also used to study the ex vivo survival of a broiler-derived extended-spectrum beta-lactamase (ESBL) producing Escherichia coli strain. In the crop, combinations of probiotics and phytobiotics, but not their single application, increased the dominance of lactobacilli. The single application of phytobiotics reduced the metabolite concentrations in the crop, but certain combinations synergistically upregulated the metabolites. Changes in the qualitative and quantitative composition of the caecal microbiota were less pronounced than in the crop. Acetate concentrations were significantly lower for phytobiotics or the L. agilis probiotic strain compared to the control group, but the L. salivarius probiotic showed significantly higher acetate concentrations alone or in combination with one phytobiotic. The synergistic effects on the reduction of the ex vivo survival of an ESBL producing E. coli strain in crop or caecum contents were also observed for most combinations. This study shows the beneficial synergistic effects of probiotics and phytobiotics on the intestinal bacterial composition and their metabolic activity in young broilers. The reduced survival of potentially problematic bacteria, such as ESBL-producing E. coli further indicates that combinations of probiotics and phytobiotics may lead to a more enhanced functionality than their individual supplementation. Full article
Show Figures

Figure 1

21 pages, 5390 KiB  
Article
Role of L. plantarum KX519413 as Probiotic and Acacia Gum as Prebiotic in Gastrointestinal Tract Strengthening
by Honey Chandran Chundakkattumalayil, Sreelekshmi Kumar, Rakhie Narayanan and Keerthi Thalakattil Raghavan
Microorganisms 2019, 7(12), 659; https://doi.org/10.3390/microorganisms7120659 - 6 Dec 2019
Cited by 21 | Viewed by 4891
Abstract
Probiotics, prebiotics, and synbiotics are potential mediators to maintaining healthy intestinal flora and have garnered an area of wide research in the past few years. The current study assesses the in vivo effects of probiotic (Lactobacillus plantarum MBTU-HK1), prebiotic (acacia gum) (either [...] Read more.
Probiotics, prebiotics, and synbiotics are potential mediators to maintaining healthy intestinal flora and have garnered an area of wide research in the past few years. The current study assesses the in vivo effects of probiotic (Lactobacillus plantarum MBTU-HK1), prebiotic (acacia gum) (either singly or in combination as a synbiotic on growth performance), biochemical, hematological, physiological, and immunological effects and their role in the reduction of procarcinogen enzyme activities in male Balb/c mice. The absence of treatment-related toxicity and a normal physiological range of biochemical and hematological parameters ensure their safe consumption. The synbiotic group was found to possess lowered cholesterol levels and enhanced protein and mineral content. The probiotic and synbiotic groups reinforced immunoglobulin levels and had a modulatory effect on phagocytosis. A lymphocyte proliferation pattern suggested the stimulatory effect of synbiotic combination on splenocyte viability and proliferation. Total antioxidant capability in the liver was determined by a 2,2-diphenyl-1-picrylhydrazyl assay and all the treatment groups were found to possess increased scavenging activity. Synbiotic and prebiotic treatment was observed to lead to reduced tumor necrosis factor α (TNF-α) levels. Bacterial procarcinogenic fecal enzyme activities were found to be decreased, proving their role in the prevention of colon cancer incidence. This study proves the potency and safety of oral administration of L. plantarum MBTU-HK1 and acacia gum either individually or in combination. Full article
Show Figures

Figure 1

30 pages, 9943 KiB  
Article
Probiotic Effects of a Novel Strain, Acinetobacter KU011TH, on the Growth Performance, Immune Responses, and Resistance against Aeromonas hydrophila of Bighead Catfish (Clarias macrocephalus Günther, 1864)
by Anurak Bunnoy, Uthairat Na-Nakorn and Prapansak Srisapoome
Microorganisms 2019, 7(12), 613; https://doi.org/10.3390/microorganisms7120613 - 25 Nov 2019
Cited by 39 | Viewed by 5466
Abstract
In the present study, the novel probiotic strain Acinetobacter KU011TH with an evident lack of pathogenicity in catfish was experimented. Three practical administration routes, namely, feed additive (FD), water-soluble additive (SOL), and a combination route (FD+SOL), were applied in two sizes of catfish. [...] Read more.
In the present study, the novel probiotic strain Acinetobacter KU011TH with an evident lack of pathogenicity in catfish was experimented. Three practical administration routes, namely, feed additive (FD), water-soluble additive (SOL), and a combination route (FD+SOL), were applied in two sizes of catfish. After 120 days of FD+SOL administration, catfish fingerlings (15 g) exhibited a significant improvement in all tested growth performance parameters. For 15- and 30-day applications at the juvenile stage (150 g), phagocytic activity, phagocytic index, lysozyme activity, respiratory burst activity, alternative complement pathway, and bactericidal activity were significantly increased. Furthermore, probiotic-administered bighead catfish exhibited an upregulated expression of several immune-related genes in tested organs. Significant colonization by Acinetobacter KU011TH in rearing water and on skin and gills was observed among experimental groups. Histological analysis clearly indicated enhanced physical characteristics of skin mucosal immunity in the treated groups. No histopathological changes in the gills, skin, intestine or liver were observed among the fish groups. Interestingly, after challenge with Aeromonas hydrophila, the survival rates of the treated groups were significantly higher than those of the controls. In conclusion, the novel probiont Acinetobacter KU011TH provides a potent strategy for improvement in growth and disease resistance, which is an important steppingstone for sustaining catfish aquaculture. Full article
Show Figures

Figure 1

14 pages, 2466 KiB  
Article
Oral Administration of a Select Mixture of Lactobacillus and Bacillus Alleviates Inflammation and Maintains Mucosal Barrier Integrity in the Ileum of Pigs Challenged with Salmonella Infantis
by Xiao Liu, Bing Xia, Ting He, Dan Li, Jin-Hui Su, Liang Guo, Jiu-feng Wang and Yao-Hong Zhu
Microorganisms 2019, 7(5), 135; https://doi.org/10.3390/microorganisms7050135 - 15 May 2019
Cited by 28 | Viewed by 3814
Abstract
Salmonella is important as both a cause of clinical disease in swine and as a source of food-borne transmission of disease to humans. Lactobacillus and Bacillus are often used as antibiotic substitutes to prevent Salmonella infection. In this study, we evaluated the effects [...] Read more.
Salmonella is important as both a cause of clinical disease in swine and as a source of food-borne transmission of disease to humans. Lactobacillus and Bacillus are often used as antibiotic substitutes to prevent Salmonella infection. In this study, we evaluated the effects of a select mixture of Lactobacillus johnsonii L531, Bacillus licheniformis BL1721 and Bacillus subtilis BS1715 (LBB-mix) in prevention of Salmonella enterica serovar Infantis infection in a pig model. LBB-mix was orally administered to newly weaned piglets for seven days before S. Infantis challenge. LBB-mix pretreatment ameliorated S. Infantis-induced fever, leukocytosis, growth performance loss, and ileal inflammation. Pre-administration of LBB-mix reduced the number of Salmonella in the feces but increased the number of goblet cells in the ileum. S. Infantis infection resulted in an increase in cell death in the ileum, this increase was attenuated by LBB-mix consumption. Claudin 1 and cleaved caspase-1 expression was decreased in the ileum of pigs challenged with S. Infantis, but not in pigs pretreated with LBB-mix. In conclusion, our data indicate that a select LBB-mix has positive effects on controlling S. Infantis infection via alleviating inflammation and maintaining the intestinal mucosal barrier integrity in pigs. Full article
Show Figures

Figure 1

Review

Jump to: Research

12 pages, 781 KiB  
Review
Gut Dysbiosis and the Intestinal Microbiome: Streptococcus thermophilus a Key Probiotic for Reducing Uremia
by Luis Vitetta, Hannah Llewellyn and Debbie Oldfield
Microorganisms 2019, 7(8), 228; https://doi.org/10.3390/microorganisms7080228 - 31 Jul 2019
Cited by 41 | Viewed by 9080
Abstract
In the intestines, probiotics can produce antagonistic effects such as antibiotic–like compounds, bactericidal proteins such as bacteriocins, and encourage the production of metabolic end products that may assist in preventing infections from various pathobionts (capable of pathogenic activity) microbes. Metabolites produced by intestinal [...] Read more.
In the intestines, probiotics can produce antagonistic effects such as antibiotic–like compounds, bactericidal proteins such as bacteriocins, and encourage the production of metabolic end products that may assist in preventing infections from various pathobionts (capable of pathogenic activity) microbes. Metabolites produced by intestinal bacteria and the adoptions of molecular methods to cross-examine and describe the human microbiome have refreshed interest in the discipline of nephology. As such, the adjunctive administration of probiotics for the treatment of chronic kidney disease (CKD) posits that certain probiotic bacteria can reduce the intestinal burden of uremic toxins. Uremic toxins eventuate from the over manifestation of glucotoxicity and lipotoxicity, increased activity of the hexosamine and polyol biochemical and synthetic pathways. The accumulation of advanced glycation end products that have been regularly associated with a dysbiotic colonic microbiome drives the overproduction of uremic toxins in the colon and the consequent local pro-inflammatory processes. Intestinal dysbiosis associated with significant shifts in abundance and diversity of intestinal bacteria with a resultant and maintained uremia promoting an uncontrolled mucosal pro-inflammatory state. In this narrative review we further address the efficacy of probiotics and highlighted in part the probiotic bacterium Streptococcus thermophilus as an important modulator of uremic toxins in the gut of patients diagnosed with chronic kidney disease. In conjunction with prudent nutritional practices it may be possible to prevent the progression of CKD and significantly downregulate mucosal pro-inflammatory activity with the administration of probiotics that contain S. thermophilus. Full article
Show Figures

Figure 1

Back to TopTop