molecules-logo

Journal Browser

Journal Browser

Design, Synthesis and Applications of Bioactive Compounds

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Medicinal Chemistry".

Deadline for manuscript submissions: 31 March 2025 | Viewed by 5220

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
Interests: antitumor activity; anti-inflammatory activity; in vitro and in vivo; novel compounds

E-Mail Website
Guest Editor
Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
Interests: green chemistry; synthesis; heterocyclic compounds; coumarins; quinazolinones
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
Interests: supramolecular chemistry; DNA, RNA, nucleotide recognition; spectroscopy; heterocyclic chemistry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Bioactive compounds are molecules that exhibit specific biological activities and are of great importance in various fields of science, health, and industry. They encompass a wide range of chemical entities, from natural products to rationally designed synthetic compounds, each with a unique bioactivity profile. These compounds play a central role in drug discovery, agricultural innovation, and materials science, making them central to advances in a variety of fields.

Our Special Issue, titled “Design, Synthesis and Applications of Bioactive Compounds”, presents a collection of cutting-edge research articles that address the creative design, efficient synthesis, examination of the structure–activity relationship, and diverse applications of bioactive compounds. This Special Issue serves as a knowledge hub for researchers, chemists, biologists, and biomedical and material scientists, highlighting the central role of design and synthesis in shaping the future of bioactive compounds and their diverse applications. Readers can explore these articles to appreciate the transformative potential of bioactive compounds and the remarkable work of scientists advancing this fascinating field.

Prof. Dr. Ljubica Glavaš-Obrovac
Dr. Maja Molnar
Dr. Lidija-Marija Tumir
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioactive compounds
  • molecular design
  • synthetic methods
  • natural products and modification of natural products
  • in silico drug design
  • structure–activity relationship
  • drug discovery
  • biomedical applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

26 pages, 5697 KiB  
Article
Design, Synthesis, and Biological Evaluation of HDAC Inhibitors Containing Natural Product-Inspired N-Linked 2-Acetylpyrrole Cap
by Han Zhang, Qianqian Shen, Zhu Hu, Pei-Qian Wu, Yi Chen, Jin-Xin Zhao and Jian-Min Yue
Molecules 2024, 29(19), 4653; https://doi.org/10.3390/molecules29194653 - 30 Sep 2024
Viewed by 1056
Abstract
Drawing inspiration from the structural resemblance between a natural product N-(3-carboxypropyl)-2-acetylpyrrole and phenylbutyric acid, a pioneer HDAC inhibitor evaluated in clinical trials, we embarked on the design and synthesis of a novel array of HDAC inhibitors containing an N-linked 2-acetylpyrrole cap [...] Read more.
Drawing inspiration from the structural resemblance between a natural product N-(3-carboxypropyl)-2-acetylpyrrole and phenylbutyric acid, a pioneer HDAC inhibitor evaluated in clinical trials, we embarked on the design and synthesis of a novel array of HDAC inhibitors containing an N-linked 2-acetylpyrrole cap by utilizing the pharmacophore fusion strategy. Among them, compound 20 exhibited potential inhibitory activity on HDAC1, and demonstrated notable potency against RPMI-8226 cells with an IC50 value of 2.89 ± 0.43 μM, which was better than chidamide (IC50 = 10.23 ± 1.02 μM). Western blot analysis and Annexin V-FTIC/propidium iodide (PI) staining showed that 20 could enhance the acetylation of histone H3, as well as remarkably induce apoptosis of RPMI-8226 cancer cells. The docking study highlighted the presence of a hydrogen bond between the carbonyl oxygen of the 2-acetylpyrrole cap group and Phe198 of the HDAC1 enzyme in 20, emphasizing the crucial role of introducing this natural product-inspired cap group. Molecular dynamics simulations showed that the docked complex had good conformational stability. The ADME parameters calculation showed that 20 possesses remarkable theoretical drug-likeness properties. Taken together, these results suggested that 20 is worthy of further exploration as a potential HDAC-targeted anticancer drug candidate. Full article
(This article belongs to the Special Issue Design, Synthesis and Applications of Bioactive Compounds)
Show Figures

Figure 1

25 pages, 8632 KiB  
Article
Rational Design, Synthesis, Molecular Docking, and Biological Evaluations of New Phenylpiperazine Derivatives of 1,2-Benzothiazine as Potential Anticancer Agents
by Berenika M. Szczęśniak-Sięga, Natalia Zaręba, Żaneta Czyżnikowska, Tomasz Janek and Marta Kepinska
Molecules 2024, 29(18), 4282; https://doi.org/10.3390/molecules29184282 - 10 Sep 2024
Viewed by 730
Abstract
The aim of this study was to obtain new, safe, and effective compounds with anticancer activity since cancer is still the leading cause of mortality worldwide. The rational design of new compounds was based on the introduction of differentially substituted phenylpiperazines into the [...] Read more.
The aim of this study was to obtain new, safe, and effective compounds with anticancer activity since cancer is still the leading cause of mortality worldwide. The rational design of new compounds was based on the introduction of differentially substituted phenylpiperazines into the 1,2-benzothiazine scaffold as a reference for the structures of recent topoisomerase II (Topo II) inhibitors such as dexrazoxane and XK-469. The newly designed group of 1,2-benzothiazine derivatives was synthesized and tested on healthy (MCF10A) and cancer (MCF7) cell lines, alone and in combination with doxorubicin (DOX). In addition, molecular docking studies were performed both to the DNA-Topo II complex and to the minor groove of DNA. Most of the tested compounds showed cytotoxic activity comparable to doxorubicin, a well-known anticancer drug. The compound BS230 (3-(4-chlorobenzoyl)-2-{2-[4-(3,4-dichlorophenyl)-1-piperazinyl]-2-oxoethyl}-4-hydroxy-2H-1,2-benzothiazine 1,1-dioxide) showed the best antitumor activity with lower cytotoxicity towards healthy cells and at the same time stronger cytotoxicity towards cancer cells than DOX. Moreover, molecular docking studies showed that BS230 has the ability to bind to both the DNA-Topo II complex and the minor groove of DNA. Binding of the minor groove to DNA was also proven by fluorescence spectroscopy. Full article
(This article belongs to the Special Issue Design, Synthesis and Applications of Bioactive Compounds)
Show Figures

Figure 1

14 pages, 1555 KiB  
Article
Synthesis of Hybrid Molecules with Imidazole-1,3,4-thiadiazole Core and Evaluation of Biological Activity on Trypanosoma cruzi and Leishmania donovani
by Ali Mijoba, Nereida Parra-Giménez, Esteban Fernandez-Moreira, Hegira Ramírez, Xenón Serrano, Zuleima Blanco, Sandra Espinosa and Jaime E. Charris
Molecules 2024, 29(17), 4125; https://doi.org/10.3390/molecules29174125 - 30 Aug 2024
Viewed by 561
Abstract
The aim of this work was to obtain and evaluate, as antiprotozoals, new derivatives of benzoate imidazo-1,3,4-thiadiazole 1823 based on the concepts of molecular repositioning and hybridization. In the design of these compounds, two important pharmacophoric subunits of the fexnidazole prototype [...] Read more.
The aim of this work was to obtain and evaluate, as antiprotozoals, new derivatives of benzoate imidazo-1,3,4-thiadiazole 1823 based on the concepts of molecular repositioning and hybridization. In the design of these compounds, two important pharmacophoric subunits of the fexnidazole prototype were used: metronidazole was used as a repositioning molecule, p-aminobenzoic acid was incorporated as a bridge group, and 1,3,4-thiadiazole group was incorporated as a second pharmacophore, which at position 5 has an aromatic group with different substituents incorporated. The final six compounds were obtained through a five-step linear route with moderate to good yields. The biological results demonstrated the potential of this new class of compounds, since three of them 1921 showed inhibitory activity on proliferation, in the order of 50%, in the in vitro assay against epimastigotes of T. cruzi (Strain Y sensitive to nifurtimox and benznidazole) and promastigotes of L. donovani, at a single concentration of 50 μM. Full article
(This article belongs to the Special Issue Design, Synthesis and Applications of Bioactive Compounds)
Show Figures

Figure 1

12 pages, 3039 KiB  
Article
Therapeutic Potential of 1-(2-Chlorophenyl)-6,7-dimethoxy-3-methyl-3,4-dihydroisoquinoline
by Valeri Slavchev, Vera Gledacheva, Mina Pencheva, Miglena Milusheva, Stoyanka Nikolova and Iliyana Stefanova
Molecules 2024, 29(16), 3804; https://doi.org/10.3390/molecules29163804 - 11 Aug 2024
Viewed by 841
Abstract
The synthesized compound 1-(2-chlorophenyl) 6-7-dimethoxy-3-methyl-3,4-dihydroisoquinoline (DIQ) was investigated as a biological agent. Its potential to affect muscle contractility was predicted through in silico PASS analysis. Based on the in silico analysis, its capabilities were experimentally investigated. The study aimed to investigate the effects [...] Read more.
The synthesized compound 1-(2-chlorophenyl) 6-7-dimethoxy-3-methyl-3,4-dihydroisoquinoline (DIQ) was investigated as a biological agent. Its potential to affect muscle contractility was predicted through in silico PASS analysis. Based on the in silico analysis, its capabilities were experimentally investigated. The study aimed to investigate the effects of DIQ on the ex vivo spontaneous contractile activity (CA) of smooth muscle (SM) tissue. DIQ was observed to reduce the strength of Ca2+-dependent contractions in SM preparations (SMP), possibly by increasing cytosolic Ca2+ levels through the activation of a voltage-gated L-type Ca2+ channel. DIQ potently affected calcium currents by modulating the function of muscarinic acetylcholine receptors (mAChRs) and 5-hydroxytryptamine (5-HT) receptors at a concentration of 50 μM. Immunohistochemical tests showed a 47% reduction in 5-HT2A and 5-HT2B receptor activity in SM cells and neurons in the myenteric plexus (MP), further confirming the effects of DIQ. Furthermore, a significant inhibition of neuronal activity was observed when the compound was co-administered with 5-HT to SM tissues. The conducted experiments confirm the ability of the isoquinoline analog to act as a physiologically active molecule to control muscle contractility and related physiological processes. Full article
(This article belongs to the Special Issue Design, Synthesis and Applications of Bioactive Compounds)
Show Figures

Figure 1

22 pages, 5892 KiB  
Article
New Triazole-Isoxazole Hybrids as Antibacterial Agents: Design, Synthesis, Characterization, In Vitro, and In Silico Studies
by Rachid Bouzammit, Salim Belchkar, Mohamed El fadili, Youssra Kanzouai, Somdutt Mujwar, Mohammed M. Alanazi, Mohammed Chalkha, Asmae Nakkabi, Mohamed Bakhouch, Emese Gal, Luiza Ioana Gaina and Ghali al houari
Molecules 2024, 29(11), 2510; https://doi.org/10.3390/molecules29112510 - 26 May 2024
Cited by 1 | Viewed by 1344
Abstract
Novel isoxazole–triazole conjugates have been efficiently synthesized using 3-formylchromone as starting material according to a multi-step synthetic approach. The structures of the target conjugates and intermediate products were characterized by standard spectroscopic techniques (1H NMR and 13C NMR) and confirmed [...] Read more.
Novel isoxazole–triazole conjugates have been efficiently synthesized using 3-formylchromone as starting material according to a multi-step synthetic approach. The structures of the target conjugates and intermediate products were characterized by standard spectroscopic techniques (1H NMR and 13C NMR) and confirmed by mass spectrometry (MS). The all-synthesized compounds were screened for their antibacterial activity against three ATCC reference strains, namely Staphylococcus aureus ATCC 25923, Staphylococcus aureus ATCC BAA-44, and Escherichia coli ATCC 25922 as well as one strain isolated from the hospital environment Pseudomonas aeruginosa. The findings indicate that conjugate 7b exhibits a stronger antibacterial response against the tested Escherichia coli ATCC 25922 and Pseudomonas aeruginosa pathogenic strains compared to the standard antibiotics. Furthermore, hybrid compound 7b proved to have a bactericidal action on the Escherichia coli ATCC 25922 strain, as evidenced by the results of the MBC determination. Moreover, the ADMET pharmacokinetic characteristics revealed a favorable profile for the examined compound, as well as a good level of oral bioavailability. Molecular docking and molecular dynamics simulations were performed to explore the inhibition mechanism and binding energies of conjugate 7b with the proteins of Escherichia coli and Pseudomonas aeruginosa bacterial strains. The in silico results corroborated the data observed in the in vitro evaluation for compound 7b. Full article
(This article belongs to the Special Issue Design, Synthesis and Applications of Bioactive Compounds)
Show Figures

Figure 1

Back to TopTop