molecules-logo

Journal Browser

Journal Browser

Bio and Nanomaterials Based on Fe3O4

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Molecular Diversity".

Deadline for manuscript submissions: closed (31 May 2014) | Viewed by 118386

Special Issue Editor


E-Mail Website
Guest Editor
Department of Science and Engineereing of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, RO-011061 Bucharest, Romania
Interests: synthesis and characterization of nanobiomaterials; polymers; pharmaceutical nanotechnology; drug delivery; anti-biofilm surfaces; nanomodified surfaces; natural products
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Due to their biocompatibility, nanometric scale, high sorption capacity, and chemical stability, Fe3O4 nanostructures have many applications in the biomedical field. Fe3O4 nanostructures have been extensively used in drug targeting, anti-tumor treatments, modulation of biofilm development, wound healing, stabilization of essential oils, magnetic resonance imaging, antimicrobial therapy, and drug delivery. The aim of this Special Issue of Molecules is to provide an updated and integrated focus on the fabrication and characterization of suitable Fe3O4-based nano-active materials; the issue will highlight the utility of novel, customized research models and their biomedical applications. The Special Issue scope is broad and includes the following areas: Lab-on-Chip devices, Matrix Assisted Pulsed Laser Evaporation technique, therapeutic magnetic micro- and nano-spheres, antimicrobial magnetic polymers, Fe3O4 nanostructured biosurfaces that prevent microbial adherence, Fe3O4-based nanostructured biomaterials, and nanobioactive systems, based on essential oils, which eradicate microbial infections, targeted drug delivery, magnetic resonance imaging, cancer therapy, thin films, etc.

Dr. Alexandru Mihai Grumezescu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.


Keywords

  • magnetite nanostructures
  • drug targeting
  • anti-tumor treatments
  • modulation of biofilm development
  • wound healing
  • stabilization of essential oils
  • magnetic resonance imaging
  • antimicrobial therapy and drug delivery
  • cancer therapy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

9177 KiB  
Article
Efficiency of Vanilla, Patchouli and Ylang Ylang Essential Oils Stabilized by Iron Oxide@C14 Nanostructures against Bacterial Adherence and Biofilms Formed by Staphylococcus aureus and Klebsiella pneumoniae Clinical Strains
by Maxim Bilcu, Alexandru Mihai Grumezescu, Alexandra Elena Oprea, Roxana Cristina Popescu, George Dan Mogoșanu, Radu Hristu, George A. Stanciu, Dan Florin Mihailescu, Veronica Lazar, Eugenia Bezirtzoglou and Mariana Carmen Chifiriuc
Molecules 2014, 19(11), 17943-17956; https://doi.org/10.3390/molecules191117943 - 4 Nov 2014
Cited by 47 | Viewed by 11005
Abstract
Biofilms formed by bacterial cells are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence and chronicization of the microbial infections and to therapy failure. The purpose of this study was to combine the unique properties of magnetic nanoparticles [...] Read more.
Biofilms formed by bacterial cells are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence and chronicization of the microbial infections and to therapy failure. The purpose of this study was to combine the unique properties of magnetic nanoparticles with the antimicrobial activity of three essential oils to obtain novel nanobiosystems that could be used as coatings for catheter pieces with an improved resistance to Staphylococcus aureus and Klebsiella pneumoniae clinical strains adherence and biofilm development. The essential oils of ylang ylang, patchouli and vanilla were stabilized by the interaction with iron oxide@C14 nanoparticles to be further used as coating agents for medical surfaces. Iron oxide@C14 was prepared by co-precipitation of Fe+2 and Fe+3 and myristic acid (C14) in basic medium. Vanilla essential oil loaded nanoparticles pelliculised on the catheter samples surface strongly inhibited both the initial adherence of S. aureus cells (quantified at 24 h) and the development of the mature biofilm quantified at 48 h. Patchouli and ylang-ylang essential oils inhibited mostly the initial adherence phase of S. aureus biofilm development. In the case of K. pneumoniae, all tested nanosystems exhibited similar efficiency, being active mostly against the adherence K. pneumoniae cells to the tested catheter specimens. The new nanobiosystems based on vanilla, patchouli and ylang-ylang essential oils could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with anti-adherence and anti-biofilm properties. Full article
(This article belongs to the Special Issue Bio and Nanomaterials Based on Fe3O4)
Show Figures

Graphical abstract

3346 KiB  
Article
Bioevaluation of Novel Anti-Biofilm Coatings Based on PVP/Fe3O4 Nanostructures and 2-((4-Ethylphenoxy)methyl)-N- (arylcarbamothioyl)benzamides
by Carmen Limban, Alexandru Vasile Missir, Alexandru Mihai Grumezescu, Alexandra Elena Oprea, Valentina Grumezescu, Bogdan Ștefan Vasile, Gabriel Socol, Roxana Trușcă, Miron Teodor Caproiu, Mariana Carmen Chifiriuc, Bianca Gălățeanu, Marieta Costache, Laurențiu Morușciag, Grațiela Pîrcălăbioru and Diana Camelia Nuță
Molecules 2014, 19(8), 12011-12030; https://doi.org/10.3390/molecules190812011 - 12 Aug 2014
Cited by 18 | Viewed by 9113
Abstract
Novel derivatives were prepared by reaction of aromatic amines with 2-(4-ethylphenoxymethyl)benzoyl isothiocyanate, affording the N-[2-(4-ethylphenoxymethyl) benzoyl]-Nꞌ-(substituted phenyl)thiourea. Structural elucidation of these compounds was performed by IR, NMR spectroscopy and elemental analysis. The new compounds were used in combination with Fe3O4 and polyvinylpyrrolidone (PVP) [...] Read more.
Novel derivatives were prepared by reaction of aromatic amines with 2-(4-ethylphenoxymethyl)benzoyl isothiocyanate, affording the N-[2-(4-ethylphenoxymethyl) benzoyl]-Nꞌ-(substituted phenyl)thiourea. Structural elucidation of these compounds was performed by IR, NMR spectroscopy and elemental analysis. The new compounds were used in combination with Fe3O4 and polyvinylpyrrolidone (PVP) for the coating of medical surfaces. In our experiments, catheter pieces were coated by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The microbial adherence ability was investigated in 6 multi-well plates by using culture based methods. The obtained surfaces were also assessed for their cytotoxicity with respect to osteoblast cells, by using fluorescence microscopy and MTT assay. The prepared surfaces by advanced laser processing inhibited the adherence and biofilm development ability of Staphylococcus aureus and Pseudomonas aeruginosa tested strains while cytotoxic effects on the 3T3-E1 preosteoblasts embedded in layer shaped alginate hydrogels were not observed. These results suggest that the obtained medical surfaces, based on the novel thiourea derivatives and magnetic nanoparticles with a polymeric shell could represent a promising alternative for the development of new and effective anti-infective strategies. Full article
(This article belongs to the Special Issue Bio and Nanomaterials Based on Fe3O4)
Show Figures

Graphical abstract

3126 KiB  
Article
Immobilization of Brassica oleracea Chlorophyllase 1 (BoCLH1) and Candida rugosa Lipase (CRL) in Magnetic Alginate Beads: An Enzymatic Evaluation in the Corresponding Proteins
by Chih-Hui Yang, Chih-Chung Yen, Jen-Jyun Jheng, Chih-Yu Wang, Sheau-Shyang Chen, Pei-Yu Huang, Keng-Shiang Huang and Jei-Fu Shaw
Molecules 2014, 19(8), 11800-11815; https://doi.org/10.3390/molecules190811800 - 7 Aug 2014
Cited by 19 | Viewed by 8812 | Correction
Abstract
Enzymes have a wide variety of applications in diverse biotechnological fields, and the immobilization of enzymes plays a key role in academic research or industrialization due to the stabilization and recyclability it confers. In this study, we immobilized the Brassica oleracea chlorophyllase 1 [...] Read more.
Enzymes have a wide variety of applications in diverse biotechnological fields, and the immobilization of enzymes plays a key role in academic research or industrialization due to the stabilization and recyclability it confers. In this study, we immobilized the Brassica oleracea chlorophyllase 1 (BoCLH1) or Candida rugosa lipase (CRL) in magnetic iron oxide nanoparticles-loaded alginate composite beads. The catalytic activity and specific activity of the BoCLH1 and CRL entrapped in magnetic alginate composite beads were evaluated. Results show that the activity of immobilized BoCLH1 in magnetic alginate composite beads (3.36 ± 0.469 U/g gel) was higher than that of immobilized BoCLH1 in alginate beads (2.96 ± 0.264 U/g gel). In addition, the specific activity of BoCLH1 beads (10.90 ± 1.521 U/mg protein) was higher than that immobilized BoCLH1 in alginate beads (8.52 ± 0.758 U/mg protein). In contrast, the immobilized CRL in magnetic alginate composite beads exhibited a lower enzyme activity (11.81 ± 0.618) than CRL immobilized in alginate beads (94.83 ± 7.929), and the specific activity of immobilized CRL entrapped in magnetic alginate composite beads (1.99 ± 0.104) was lower than immobilized lipase in alginate beads (15.01 ± 1.255). A study of the degradation of magnetic alginate composite beads immersed in acidic solution (pH 3) shows that the magnetic alginate composite beads remain intact in acidic solution for at least 6 h, indicating the maintenance of the enzyme catalytic effect in low-pH environment. Finally, the enzyme immobilized magnetic alginate composite beads could be collected by an external magnet and reused for at least six cycles. Full article
(This article belongs to the Special Issue Bio and Nanomaterials Based on Fe3O4)
Show Figures

Figure 1

1619 KiB  
Article
Size Control of Magnetite Nanoparticles in Excess Ligands as a Function of Reaction Temperature and Time
by Masafumi Nakaya, Ryo Nishida and Atsushi Muramatsu
Molecules 2014, 19(8), 11395-11403; https://doi.org/10.3390/molecules190811395 - 4 Aug 2014
Cited by 17 | Viewed by 7303
Abstract
The novel synthesis of monodisperse magnetite Fe3O4 nanoparticles of varying sizes using a solventless synthetic method was developed. Iron salt was treated in excess oleylamine and oleic acid as ligands. The effect of the reaction temperature and time on the [...] Read more.
The novel synthesis of monodisperse magnetite Fe3O4 nanoparticles of varying sizes using a solventless synthetic method was developed. Iron salt was treated in excess oleylamine and oleic acid as ligands. The effect of the reaction temperature and time on the particle size was investigated and the particle sizes were easily tuned from 5.3 to 20.4 nm by changing the reaction temperature and time. Full article
(This article belongs to the Special Issue Bio and Nanomaterials Based on Fe3O4)
Show Figures

Graphical abstract

849 KiB  
Article
Chitosan-Coated Magnetic Nanoparticles Prepared in One-Step by Precipitation in a High-Aqueous Phase Content Reverse Microemulsion
by María Guadalupe Pineda, Silvia Torres, Luis Valencia López, Francisco Javier Enríquez-Medrano, Ramón Díaz De León, Salvador Fernández, Hened Saade and Raúl Guillermo López
Molecules 2014, 19(7), 9273-9287; https://doi.org/10.3390/molecules19079273 - 2 Jul 2014
Cited by 26 | Viewed by 8240
Abstract
Chitosan-coated magnetic nanoparticles (CMNP) were prepared in one-step by precipitation in a high-aqueous phase content reverse microemulsion in the presence of chitosan. The high-aqueous phase concentration led to productivities close to 0.49 g CMNP/100 g microemulsion; much higher than those characteristic of precipitation [...] Read more.
Chitosan-coated magnetic nanoparticles (CMNP) were prepared in one-step by precipitation in a high-aqueous phase content reverse microemulsion in the presence of chitosan. The high-aqueous phase concentration led to productivities close to 0.49 g CMNP/100 g microemulsion; much higher than those characteristic of precipitation in reverse microemulsions for preparing magnetic nanoparticles. The obtained nanoparticles present a narrow particle size distribution with an average diameter of 4.5 nm; appearing to be formed of a single crystallite; furthermore they present superparamagnetism and high magnetization values; close to 49 emu/g. Characterization of CMNP suggests that chitosan is present as a non-homogeneous very thin layer; which explains the slight reduction in the magnetization value of CMNP in comparison with that of uncoated magnetic nanoparticles. The prepared nanoparticles show high heavy ion removal capability; as demonstrated by their use in the treatment of Pb2+ aqueous solutions; from which lead ions were completely removed within 10 min. Full article
(This article belongs to the Special Issue Bio and Nanomaterials Based on Fe3O4)
Show Figures

Figure 1

1996 KiB  
Article
MAPLE Fabricated Fe3O4@Cinnamomum verum Antimicrobial Surfaces for Improved Gastrostomy Tubes
by Alina Georgiana Anghel, Alexandru Mihai Grumezescu, Mariana Chirea, Valentina Grumezescu, Gabriel Socol, Florin Iordache, Alexandra Elena Oprea, Ion Anghel and Alina Maria Holban
Molecules 2014, 19(7), 8981-8994; https://doi.org/10.3390/molecules19078981 - 27 Jun 2014
Cited by 45 | Viewed by 8953
Abstract
Cinnamomum verum-functionalized Fe3O4 nanoparticles of 9.4 nm in size were laser transferred by matrix assisted pulsed laser evaporation (MAPLE) technique onto gastrostomy tubes (G-tubes) for antibacterial activity evaluation toward Gram positive and Gram negative microbial colonization. X-ray diffraction analysis [...] Read more.
Cinnamomum verum-functionalized Fe3O4 nanoparticles of 9.4 nm in size were laser transferred by matrix assisted pulsed laser evaporation (MAPLE) technique onto gastrostomy tubes (G-tubes) for antibacterial activity evaluation toward Gram positive and Gram negative microbial colonization. X-ray diffraction analysis of the nanoparticle powder showed a polycrystalline magnetite structure, whereas infrared mapping confirmed the integrity of C. verum (CV) functional groups after the laser transfer. The specific topography of the deposited films involved a uniform thin coating together with several aggregates of bio-functionalized magnetite particles covering the G-tubes. Cytotoxicity assays showed an increase of the G-tube surface biocompatibility after Fe3O4@CV treatment, allowing a normal development of endothelial cells up to five days of incubation. Microbiological assays on nanoparticle-modified G-tube surfaces have proved an improvement of anti-adherent properties, significantly reducing both Gram negative and Gram positive bacteria colonization. Full article
(This article belongs to the Special Issue Bio and Nanomaterials Based on Fe3O4)
Show Figures

Graphical abstract

1113 KiB  
Article
Microwave Resonant and Zero-Field Absorption Study of Doped Magnetite Prepared by a Co-Precipitation Method
by Juan Carlos Aphesteguy, Silvia E. Jacobo, Luis Lezama, Galina V. Kurlyandskaya and Nina N. Schegoleva
Molecules 2014, 19(6), 8387-8401; https://doi.org/10.3390/molecules19068387 - 19 Jun 2014
Cited by 21 | Viewed by 6798
Abstract
Fe3O4 and ZnxFe3−xO4 pure and doped magnetite magnetic nanoparticles (NPs) were prepared in aqueous solution (Series A) or in a water-ethyl alcohol mixture (Series B) by the co-precipitation method. Only one ferromagnetic resonance line was [...] Read more.
Fe3O4 and ZnxFe3−xO4 pure and doped magnetite magnetic nanoparticles (NPs) were prepared in aqueous solution (Series A) or in a water-ethyl alcohol mixture (Series B) by the co-precipitation method. Only one ferromagnetic resonance line was observed in all cases under consideration indicating that the materials are magnetically uniform. The shortfall in the resonance fields from 3.27 kOe (for the frequency of 9.5 GHz) expected for spheres can be understood taking into account the dipolar forces, magnetoelasticity, or magnetocrystalline anisotropy. All samples show non-zero low field absorption. For Series A samples the grain size decreases with an increase of the Zn content. In this case zero field absorption does not correlate with the changes of the grain size. For Series B samples the grain size and zero field absorption behavior correlate with each other. The highest zero-field absorption corresponded to 0.2 zinc concentration in both A and B series. High zero-field absorption of Fe3O4 ferrite magnetic NPs can be interesting for biomedical applications. Full article
(This article belongs to the Special Issue Bio and Nanomaterials Based on Fe3O4)
Show Figures

Figure 1

891 KiB  
Article
Magnetic Pycnoporus sanguineus-Loaded Alginate Composite Beads for Removing Dye from Aqueous Solutions
by Chih-Hui Yang, Ming-Cheng Shih, Han-Chen Chiu and Keng-Shiang Huang
Molecules 2014, 19(6), 8276-8288; https://doi.org/10.3390/molecules19068276 - 18 Jun 2014
Cited by 12 | Viewed by 9616
Abstract
Dye pollution in wastewater is a severe environmental problem because treating water containing dyes using conventional physical, chemical, and biological treatments is difficult. A conventional process is used to adsorb dyes and filter wastewater. Magnetic filtration is an emerging technology. In this study, [...] Read more.
Dye pollution in wastewater is a severe environmental problem because treating water containing dyes using conventional physical, chemical, and biological treatments is difficult. A conventional process is used to adsorb dyes and filter wastewater. Magnetic filtration is an emerging technology. In this study, magnetic Pycnoporus sanguineus-loaded alginate composite beads were employed to remove a dye solution. A white rot fungus, P. sanguineus, immobilized in alginate beads were used as a biosorbent to remove the dye solution. An alginate polymer could protect P. sanguineus in acidic environments. Superparamagnetic nanomaterials, iron oxide nanoparticles, were combined with alginate gels to form magnetic alginate composites. The magnetic guidability of alginate composites and biocompatibility of iron oxide nanoparticles facilitated the magnetic filtration and separation processes. The fungus cells were immobilized in loaded alginate composites to study the influence of the initial dye concentration and pH on the biosorption capacity. The composite beads could be removed easily post-adsorption by using a magnetic filtration process. When the amount of composite beads was varied, the results of kinetic studies of malachite green adsorption by immobilized cells of P. sanguineus fitted well with the pseudo-second-order model. The results indicated that the magnetic composite beads effectively adsorbed the dye solution from wastewater and were environmentally friendly. Full article
(This article belongs to the Special Issue Bio and Nanomaterials Based on Fe3O4)
Show Figures

Figure 1

1496 KiB  
Article
Biocompatible Fe3O4 Increases the Efficacy of Amoxicillin Delivery against Gram-Positive and Gram-Negative Bacteria
by Alexandru Mihai Grumezescu, Monica Cartelle Gestal, Alina Maria Holban, Valentina Grumezescu, Bogdan Ștefan Vasile, Laurențiu Mogoantă, Florin Iordache, Coralia Bleotu and George Dan Mogoșanu
Molecules 2014, 19(4), 5013-5027; https://doi.org/10.3390/molecules19045013 - 22 Apr 2014
Cited by 65 | Viewed by 10019
Abstract
This paper reports the synthesis and characterization of amoxicillin- functionalized magnetite nanostructures (Fe3O4@AMO), revealing and discussing several biomedical applications of these nanomaterials. Our results proved that 10 nm Fe3O4@AMO nanoparticles does not alter the normal [...] Read more.
This paper reports the synthesis and characterization of amoxicillin- functionalized magnetite nanostructures (Fe3O4@AMO), revealing and discussing several biomedical applications of these nanomaterials. Our results proved that 10 nm Fe3O4@AMO nanoparticles does not alter the normal cell cycle progression of cultured diploid cells, and an in vivo murine model confirms that the nanostructures disperse through the host body and tend to localize in particular sites and organs. The nanoparticles were found clustered especially in the lungs, kidneys and spleen, next to the blood vessels at this level, while being totally absent in the brain and liver, suggesting that they are circulated through the blood flow and have low toxicity. Fe3O4@AMO has the ability to be easily circulated through the body and optimizations may be done so these nanostructures cluster to a specific target region. Functionalized magnetite nanostructures proved a great antimicrobial effect, being active against both the Gram positive pathogen S. aureus and the Gram negative pathogen E. coli. The fabricated nanostructures significantly reduced the minimum inhibitory concentration (MIC) of the active drug. This result has a great practical relevance, since the functionalized nanostructures may be used for decreasing the therapeutic doses which usually manifest great severe side effects, when administrated in high doses. Fe3O4@AMO represents also a suitable approach for the development of new alternative strategies for improving the activity of therapeutic agents by targeted delivery and controlled release. Full article
(This article belongs to the Special Issue Bio and Nanomaterials Based on Fe3O4)
Show Figures

Graphical abstract

674 KiB  
Article
Beads-Based Electrochemical Assay for the Detection of Influenza Hemagglutinin Labeled with CdTe Quantum Dots
by Ludmila Krejcova, Lukas Nejdl, David Hynek, Sona Krizkova, Pavel Kopel, Vojtech Adam and Rene Kizek
Molecules 2013, 18(12), 15573-15586; https://doi.org/10.3390/molecules181215573 - 13 Dec 2013
Cited by 16 | Viewed by 5965
Abstract
In this study we describe a beads-based assay for rapid, sensitive and specific isolation and detection of influenza vaccine hemagglutinin (HA). Amplification of the hemagglutinin signal resulted from binding of an electrochemical label as quantum dots (QDs). For detection of the metal and [...] Read more.
In this study we describe a beads-based assay for rapid, sensitive and specific isolation and detection of influenza vaccine hemagglutinin (HA). Amplification of the hemagglutinin signal resulted from binding of an electrochemical label as quantum dots (QDs). For detection of the metal and protein part of the resulting HA-CdTe complex, two differential pulse voltammetric methods were used. The procedure includes automated robotic isolation and electrochemical analysis of the isolated product. The isolation procedure was based on the binding of paramagnetic particles (MPs) with glycan (Gly), where glycan was used as the specific receptor for linkage of the QD-labeled hemagglutinin. Full article
(This article belongs to the Special Issue Bio and Nanomaterials Based on Fe3O4)
Show Figures

Figure 1

Review

Jump to: Research, Other

1841 KiB  
Review
Bio and Nanomaterials Based on Fe3O4
by Jia-Kun Xu, Fang-Fang Zhang, Jing-Jing Sun, Jun Sheng, Fang Wang and Mi Sun
Molecules 2014, 19(12), 21506-21528; https://doi.org/10.3390/molecules191221506 - 22 Dec 2014
Cited by 163 | Viewed by 15954
Abstract
During the past few years, nanoparticles have been used for various applications including, but not limited to, protein immobilization, bioseparation, environmental treatment, biomedical and bioengineering usage, and food analysis. Among all types of nanoparticles, superparamagnetic iron oxide nanoparticles, especially Fe3O4 [...] Read more.
During the past few years, nanoparticles have been used for various applications including, but not limited to, protein immobilization, bioseparation, environmental treatment, biomedical and bioengineering usage, and food analysis. Among all types of nanoparticles, superparamagnetic iron oxide nanoparticles, especially Fe3O4, have attracted a great deal of attention due to their unique magnetic properties and the ability of being easily chemical modified for improved biocompatibility, dispersibility. This review covers recent advances in the fabrication of functional materials based on Fe3O4 nanoparticles together with their possibilities and limitations for application in different fields. Full article
(This article belongs to the Special Issue Bio and Nanomaterials Based on Fe3O4)
Show Figures

Figure 1

1343 KiB  
Review
Magnetite Nanostructures as Novel Strategies for Anti-Infectious Therapy
by Ioannis Liakos, Alexandru Mihai Grumezescu and Alina Maria Holban
Molecules 2014, 19(8), 12710-12726; https://doi.org/10.3390/molecules190812710 - 20 Aug 2014
Cited by 61 | Viewed by 9024
Abstract
This review highlights the current situation of antimicrobial resistance and the use of magnetic nanoparticles (MNPs) in developing novel routes for fighting infectious diseases. The most important two directions developed recently are: (i) improved delivery of antimicrobial compounds based on a drastic decrease [...] Read more.
This review highlights the current situation of antimicrobial resistance and the use of magnetic nanoparticles (MNPs) in developing novel routes for fighting infectious diseases. The most important two directions developed recently are: (i) improved delivery of antimicrobial compounds based on a drastic decrease of the minimal inhibition concentration (MIC) of the drug used independently; and (ii) inhibition of microbial attachment and biofilm development on coated medical surfaces. These new directions represent promising alternatives in the development of new strategies to eradicate and prevent microbial infections that involve resistant and biofilm-embedded bacteria. Recent promising applications of MNPs, as the development of delivery nanocarriers and improved nanovehicles for the therapy of different diseases are discussed, together with the mechanisms of microbial inhibition. Full article
(This article belongs to the Special Issue Bio and Nanomaterials Based on Fe3O4)
Show Figures

Graphical abstract

Other

Jump to: Research, Review

1413 KiB  
Correction
Correction: Yang, C.-H., et al. Immobilization of Brassica oleracea Chlorophyllase 1 (BoCLH1) and Candida rugosa Lipase (CRL) in Magnetic Alginate Beads: An Enzymatic Evaluation in the Corresponding Proteins. Molecules 2014, 19, 11800-11815
by Chih-Hui Yang, Chih-Chung Yen, Jyun-Jen Jheng, Chih-Yu Wang, Sheau-Shyang Chen, Pei-Yu Huang, Keng-Shiang Huang and Jei-Fu Shaw
Molecules 2015, 20(4), 7325-7328; https://doi.org/10.3390/molecules20047325 - 21 Apr 2015
Cited by 2 | Viewed by 6153
Abstract
The authors wish to correct Scheme 1, and Figures 1, 4 and 7 in [1] as follows. Scheme 1 should include phytol and fatty acid. [...] Full article
(This article belongs to the Special Issue Bio and Nanomaterials Based on Fe3O4)
Show Figures

Figure 1

Back to TopTop