molecules-logo

Journal Browser

Journal Browser

Advanced Nanomaterials for Energy Storage Devices

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Inorganic Chemistry".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 11098

Special Issue Editor


E-Mail Website
Guest Editor
Hanse-Wissenschaftskolleg—Institute for Advanced Study (HWK), Lehmkuhlenbusch 4, 27753 Delmenhorst, Germany
Interests: metal oxide nanomaterials; hybrid metal sulfides nanomaterials; biosensors; energy devices; characterization of nanomaterials; electrochemistry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Recent research developments in nanoscience and nanotechnology have seen plenty of nanomaterials in energy storage systems (ESSs) and technologies. The rapid growth of portable electronics and electric vehicles have propelled the development of ESSs devices such as lithium-ion batteries and supercapacitors. Electrochemical energy storage (EES)  technology is also of critical importance for portable electronics, transportation, and large-scale energy storage systems that are emerging as primary power sources for global energy dependence due to their high energy or power densities, portability, and long cycle life. Research on nanomaterials is rising to an unprecedented height due to their unique characteristics for application in the energy sector. The modification of nanomaterials structurally or engineering them into designed architectures can enhance the performance of ESSs. Several carbon nanomaterials (viz., fullerenes, carbon nanotubes, graphene, and their assemblies), layered transition metal dichalcogenides (TMDs), porous 1D nanomaterials, 2D transition metal carbides/nitride (MXene) nanomaterials, metal–organic frameworks (MOFs), etc., have significantly impacted the energy storage systems. Further, with a rise in thermal energy consumption, the development of thermal energy storage systems can also significantly benefit the society. In this regard, phase change nanomaterials (PCNMs) have demonstrated potential in the storage and conversion of solar thermal energy.

The aim of the Special Issue on "Advanced Nanomaterials for Energy Storage Devices" is to invite the submission of original research, short communications, and review articles focusing on the current state-of-the-art nanomaterials that are used in energy devices and technology. Manuscripts providing new insights on nanomaterials for energy conversion and storage are welcome. The Special Issue will essentially provide a platform for energy researchers to showcase their work in the emerging areas, such as solar energy conversion; energy storage including batteries, flow batteries, and supercapacitors; catalysis for energy technologies; fuel cells; hydrogen production, storage, and distribution; utilization of carbon dioxide; and other sustainable energy conversion technologies.

Dr. Sudeshna Chandra
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electrochemical energy storage
  • carbon nanomaterials
  • layered transition metal dichalcogenides
  • porous 1D nanomaterials
  • 2D transition metal carbides/nitride (MXene) nanomaterials
  • energy conversion and storage
  • fuel cells
  • batteries
  • flow batteries
  • supercapacitors
  • hydrogen production
  • storage and distribution
  • utilization of carbon dioxide

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 3251 KiB  
Article
MUF-n-Octadecane Phase-Change Microcapsules: Effects of Core pH and Core–Wall Ratio on Morphology and Thermal Properties of Microcapsules
by Lin Lin, Ziqi Li, Jian Zhang, Tonghua Ma, Renzhong Wei, Qiang Zhang and Junyou Shi
Molecules 2024, 29(20), 4794; https://doi.org/10.3390/molecules29204794 - 10 Oct 2024
Viewed by 783
Abstract
Phase change energy storage microcapsules were synthesized in situ by using melamine-formaldehyde–urea co-condensation resin (MUF) as wall material, n-octadecane (C18) as core material and styryl-maleic anhydride copolymer (SMA) as emulsifier. Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry and thermogravimetric analysis [...] Read more.
Phase change energy storage microcapsules were synthesized in situ by using melamine-formaldehyde–urea co-condensation resin (MUF) as wall material, n-octadecane (C18) as core material and styryl-maleic anhydride copolymer (SMA) as emulsifier. Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry and thermogravimetric analysis were used to study the effects of emulsifier type, emulsifier dosage, core–wall ratio and pH on the morphology and thermal properties of microcapsules. The results show that the pH of core material and the ratio of core to wall have a great influence on the performance of microcapsules. SMA emulsifiers and MUF are suitable for the encapsulation of C18. When the pH is 4.5 and the core–wall ratio is 2/1, the latent heat and encapsulation efficiency of phase transition reaches 207.3 J g−1 and 84.7%, respectively. The prepared phase-change microcapsules also have good shape stability and thermal stability. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage Devices)
Show Figures

Figure 1

11 pages, 2290 KiB  
Article
Enhancing Electrochemical Performance of Si@CNT Anode by Integrating SrTiO3 Material for High-Capacity Lithium-Ion Batteries
by Nischal Oli, Diana C. Liza Castillo, Brad R. Weiner, Gerardo Morell and Ram S. Katiyar
Molecules 2024, 29(19), 4750; https://doi.org/10.3390/molecules29194750 - 8 Oct 2024
Cited by 1 | Viewed by 1106
Abstract
Silicon (Si) has attracted worldwide attention for its ultrahigh theoretical storage capacity (4200 mA h g−1), low mass density (2.33 g cm−3), low operating potential (0.4 V vs. Li/Li+), abundant reserves, environmentally benign nature, and low cost. [...] Read more.
Silicon (Si) has attracted worldwide attention for its ultrahigh theoretical storage capacity (4200 mA h g−1), low mass density (2.33 g cm−3), low operating potential (0.4 V vs. Li/Li+), abundant reserves, environmentally benign nature, and low cost. It is a promising high-energy-density anode material for next-generation lithium-ion batteries (LIBs), offering a replacement for graphite anodes owing to the escalating energy demands in booming automobile and energy storage applications. Unfortunately, the commercialization of silicon anodes is stringently hindered by large volume expansion during lithiation–delithiation, the unstable and detrimental growth of electrode/electrolyte interface layers, sluggish Li-ion diffusion, poor rate performance, and inherently low ion/electron conductivity. These present major safety challenges lead to quick capacity degradation in LIBs. Herein, we present the synergistic effects of nanostructured silicon and SrTiO3 (STO) for use as anodes in Li-ion batteries. Si and STO nanoparticles were incorporated into a multiwalled carbon nanotube (CNT) matrix using a planetary ball-milling process. The mechanical stress resulting from the expansion of Si was transferred via the CNT matrix to the STO. We discovered that the introduction of STO can improve the electrochemical performance of Si/CNT nanocomposite anodes. Experimental measurements and electrochemical impedance spectroscopy provide evidence for the enhanced mobility of Li-ions facilitated by STO. Hence, incorporating STO into the Si@CNT anode yields promising results, exhibiting a high initial Coulombic efficiency of approximately 85%, a reversible specific capacity of ~800 mA h g−1 after 100 cycles at 100 mA g−1, and a high-rate capability of 1400 mA g−1 with a capacity of 800 mA h g−1. Interestingly, it exhibits a capacity of 350 mAh g−1 after 1000 lithiation and delithiation cycles at a high rate of 600 mA hg−1. This result unveils and sheds light on the design of a scalable method for manufacturing Si anodes for next-generation LIBs. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage Devices)
Show Figures

Figure 1

11 pages, 2970 KiB  
Article
High-Density Capacitive Energy Storage in Low-Dielectric-Constant Polymer PMMA/2D Mica Nanofillers Heterostructure Composite
by Sumit Bera, Rukshan Thantirige, Sujit A. Kadam, Anirudha V. Sumant and Nihar R. Pradhan
Molecules 2024, 29(19), 4671; https://doi.org/10.3390/molecules29194671 - 1 Oct 2024
Viewed by 906
Abstract
The ubiquitous, rising demand for energy storage devices with ultra-high storage capacity and efficiency has drawn tremendous research interest in developing energy storage devices. Dielectric polymers are one of the most suitable materials used to fabricate electrostatic capacitive energy storage devices with thin-film [...] Read more.
The ubiquitous, rising demand for energy storage devices with ultra-high storage capacity and efficiency has drawn tremendous research interest in developing energy storage devices. Dielectric polymers are one of the most suitable materials used to fabricate electrostatic capacitive energy storage devices with thin-film geometry with high power density. In this work, we studied the dielectric properties, electric polarization, and energy density of PMMA/2D Mica nanocomposite capacitors where stratified 2D nanofillers are interfaced between the multiple layers of PMMA thin films using two heterostructure designs of the capacitors, PMMA/2D Mica/PMMA (PMP) and PMMA/2D Mica/PMMA/2D Mica/PMMA (PMPMP). The incorporation of a 2D Mica nanofiller in the low-dielectric-constant PMMA leads to an enhancement in the dielectric constant, with ∆ε ~ 15% and 53% for PMP and PMPMP heterostructures at room temperature. Additionally, a significant improvement in discharged energy density was measured for the PMPMP capacitor (Ud ~ 38 J/cm3 at 825 MV/m) compared to the pristine PMMA (Ud ~ 9.5 J/cm3 at 522 MV/m) and PMP capacitors (Ud ~ 19 J/cm3 at 740 MV/m). This excellent capacitive and energy storage performance of the PMMA/2D Mica heterostructure nanocomposite may inform the fabrication of thin-film, high-density energy storage capacitor devices for potential applications in various platforms. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage Devices)
Show Figures

Figure 1

17 pages, 4803 KiB  
Article
Comparative Investigation of Water-Based CMC and LA133 Binders for CuO Anodes in High-Performance Lithium-Ion Batteries
by Nischal Oli, Sunny Choudhary, Brad R. Weiner, Gerardo Morell and Ram S. Katiyar
Molecules 2024, 29(17), 4114; https://doi.org/10.3390/molecules29174114 - 30 Aug 2024
Cited by 2 | Viewed by 939
Abstract
Transition metal oxides are considered to be highly promising anode materials for high-energy lithium-ion batteries. While carbon matrices have demonstrated effectiveness in enhancing the electrical conductivity and accommodating the volume expansion of transition metal oxide-based anode materials in lithium-ion batteries (LIBs), achieving an [...] Read more.
Transition metal oxides are considered to be highly promising anode materials for high-energy lithium-ion batteries. While carbon matrices have demonstrated effectiveness in enhancing the electrical conductivity and accommodating the volume expansion of transition metal oxide-based anode materials in lithium-ion batteries (LIBs), achieving an optimized utilization ratio remains a challenging obstacle. In this investigation, we have devised a straightforward synthesis approach to fabricate CuO nano powder integrated with carbon matrix. We found that with the use of a sodium carboxymethyl cellulose (CMC) based binder and fluoroethylene carbonate additives, this anode exhibits enhanced performance compared to acrylonitrile multi-copolymer binder (LA133) based electrodes. CuO@CMC electrodes reveal a notable capacity ~1100 mA h g−1 at 100 mA g−1 following 170 cycles, and exhibit prolonged cycling stability, with a capacity of 450 mA h g−1 at current density 300 mA g−1 over 500 cycles. Furthermore, they demonstrated outstanding rate performance and reduced charge transfer resistance. This study offers a viable approach for fabricating electrode materials for next-generation, high energy storage devices. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage Devices)
Show Figures

Figure 1

13 pages, 5106 KiB  
Article
The Preparation of N, P-Doped NiSe Nanorod Electrode Materials on Nickel Foam Using the Microwave Method for High-Performance Supercapacitors
by Zhen Lu, Hongjie Kang, Qianwen Duan, Chao Lv, Rui Liu, Feng Feng and Haidong Zhao
Molecules 2024, 29(13), 3224; https://doi.org/10.3390/molecules29133224 - 7 Jul 2024
Cited by 1 | Viewed by 935
Abstract
Transition metal selenides have the leading position in the field of energy storage and conversion due to their high theoretical capacity, good electrical conductivity, and cycling stability. Nickel is widely used for the construction of positive electrodes in devices due to its good [...] Read more.
Transition metal selenides have the leading position in the field of energy storage and conversion due to their high theoretical capacity, good electrical conductivity, and cycling stability. Nickel is widely used for the construction of positive electrodes in devices due to its good conductivity, variable valence state, and ideal redox activity. NiSe materials have high internal resistance and are prone to volume change during charging and discharging, thus affecting the practical application of this electrode material, and the reported NiSe materials have not achieved a more desirable capacity value. Therefore, in this study, N, P-NiSe nanoelectrode materials were prepared using nickel foam as the nickel source and hexachlorocyclotriphonitrile as the nitrogen and phosphorus dopant using an efficient, energy-saving, and simple microwave method. It was also characterised by XRD and XPS to confirm the successful preparation of N, P-NiSe materials. In addition, the material yielded a high capacitance value (3184 F g−1) and good cycling stability (72% of the initial capacitance value was retained after 4000 cycles) in electrochemical tests. To demonstrate its excellent suitability for practical applications, an asymmetric supercapacitor was assembled using N, P-NiSe as the anode and activated carbon as the cathode. At an operating voltage of 1.6 V, the device achieved an energy density of 289.06 Wh kg−1 and a power density of 799.26 W kg−1 and retained 80% of its initial capacity after 20,000 cycles. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage Devices)
Show Figures

Figure 1

15 pages, 12589 KiB  
Article
The Effect of Expanded Graphite Content on the Thermal Properties of Fatty Acid Composite Materials for Thermal Energy Storage
by Dongyi Zhou, Shuaizhe Xiao and Yicai Liu
Molecules 2024, 29(13), 3146; https://doi.org/10.3390/molecules29133146 - 2 Jul 2024
Cited by 1 | Viewed by 854
Abstract
The mass content of expanded graphite (EG) in fatty acid/expanded graphite composite phase-change materials (CPCMs) affects their thermal properties. In this study, a series of capric–myristic acid/expanded graphite CPCMs with different EG mass content (1%, 3%, 5%, 8%, 12%, 16%, and 20%) were [...] Read more.
The mass content of expanded graphite (EG) in fatty acid/expanded graphite composite phase-change materials (CPCMs) affects their thermal properties. In this study, a series of capric–myristic acid/expanded graphite CPCMs with different EG mass content (1%, 3%, 5%, 8%, 12%, 16%, and 20%) were prepared. The adsorption performance effect of EG on the PCMs was observed and analyzed. The structure and thermal properties of the prepared CPCMs were characterized via scanning electron microscopy, differential scanning calorimetry, thermal conductivity measurements, and heat energy storage/release experiments. The results show that the minimum mass content of EG in the CPCMs is 7.6%. The phase-change temperature of the CPCMs is close to that of the PCMs, at around 19 °C. The latent heat of phase change is equivalent to that of the PCM at the corresponding mass content, and that of phase change with an EG mass content of 8% is 138.0 J/g. The CPCMs exhibit a large increase in thermal conductivity and a significant decrease in storage/release time as the expanded graphite mass content increases. The thermal conductivity of the CPCM with a mass content of 20% is 418.5% higher than that with a mass content of 5%. With an increase in the EG mass content in CPCMs, the heat transfer mainly transitions from phase-change heat transfer to thermal conductivity. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage Devices)
Show Figures

Figure 1

18 pages, 4126 KiB  
Article
Improvement in Electrochemical Performance of Waste Sugarcane Bagasse-Derived Carbon via Hybridization with SiO2 Nanospheres
by Muhammad Mudassir Ahmad Alwi, Jyoti Singh, Arup Choudhury, SK Safdar Hossain and Akbar Niaz Butt
Molecules 2024, 29(7), 1569; https://doi.org/10.3390/molecules29071569 - 31 Mar 2024
Cited by 1 | Viewed by 1313
Abstract
Sugar industries generate substantial quantities of waste biomass after the extraction of sugar water from sugarcane stems, while biomass-derived porous carbon has currently received huge research attention for its sustainable application in energy storage systems. Hence, we have investigated waste sugarcane bagasse (WSB) [...] Read more.
Sugar industries generate substantial quantities of waste biomass after the extraction of sugar water from sugarcane stems, while biomass-derived porous carbon has currently received huge research attention for its sustainable application in energy storage systems. Hence, we have investigated waste sugarcane bagasse (WSB) as a cheap and potential source of porous carbon for supercapacitors. The electrochemical capacitive performance of WSB-derived carbon was further enhanced through hybridization with silicon dioxide (SiO2) as a cost-effective pseudocapacitance material. Porous WSB-C/SiO2 nanocomposites were prepared via the in situ pyrolysis of tetraethyl orthosilicate (TEOS)-modified WSB biomass. The morphological analysis confirms the pyrolytic growth of SiO2 nanospheres on WSB-C. The electrochemical performance of WSB-C/SiO2 nanocomposites was optimized by varying the SiO2 content, using two different electrolytes. The capacitance of activated WSB-C was remarkably enhanced upon hybridization with SiO2, while the nanocomposite electrode demonstrated superior specific capacitance in 6 M KOH electrolyte compared to neutral Na2SO4 electrolyte. A maximum specific capacitance of 362.3 F/g at 0.25 A/g was achieved for the WSB-C/SiO2 105 nanocomposite. The capacitance retention was slightly lower in nanocomposite electrodes (91.7–86.9%) than in pure WSB-C (97.4%) but still satisfactory. A symmetric WSB-C/SiO2 105//WSB-C/SiO2 105 supercapacitor was fabricated and achieved an energy density of 50.3 Wh kg−1 at a power density of 250 W kg−1, which is substantially higher than the WSB-C//WSB-C supercapacitor (22.1 Wh kg−1). Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage Devices)
Show Figures

Figure 1

13 pages, 3705 KiB  
Article
All-Nitrogen Energetic Material Cubic Gauche Polynitrogen: Plasma Synthesis and Thermal Performance
by Chenxi Qu, Jiale Li, Kewei Ding, Songsong Guo and Yating Jia
Molecules 2024, 29(2), 504; https://doi.org/10.3390/molecules29020504 - 19 Jan 2024
Cited by 1 | Viewed by 1472
Abstract
Numerous theoretical calculations have demonstrated that polynitrogen with an extending polymeric network is an ultrahigh-energy all-nitrogen material. Typical samples, such as cubic gauche polynitrogen (cg-N), have been synthesized, but the thermal performance of polynitrogen has not been unambiguously determined. Herein, macroscopic samples of [...] Read more.
Numerous theoretical calculations have demonstrated that polynitrogen with an extending polymeric network is an ultrahigh-energy all-nitrogen material. Typical samples, such as cubic gauche polynitrogen (cg-N), have been synthesized, but the thermal performance of polynitrogen has not been unambiguously determined. Herein, macroscopic samples of polynitrogen were synthesized utilizing a coated substrate, and their thermal decomposition behavior was investigated. Polynitrogen with carbon nanotubes was produced using a plasma-enhanced chemical vapor deposition method and characterized using infrared, Raman, X-ray diffraction X-ray photoelectron spectroscopy and transmission electron microscope. The results showed that the structure of the deposited polynitrogen was consistent with that of cg-N and the amount of deposition product obtained with coated substrates increased significantly. Differential scanning calorimetry (DSC) at various heating rates and TG-DSC-FTIR-MS analyses were performed. The thermal decomposition temperature of cg-N was determined to be 429 °C. The apparent activation energy (Ea) of cg-N calculated by the Kissinger and Ozawa equations was 84.7 kJ/mol and 91.9 kJ/mol, respectively, with a pre-exponential constant (lnAk) of 12.8 min−1. In this study, cg-N was demonstrated to be an all-nitrogen material with good thermal stability and application potential to high-energy-density materials. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage Devices)
Show Figures

Graphical abstract

15 pages, 1885 KiB  
Article
Effect of Pore Size Distribution on Energy Storage of Nanoporous Carbon Materials in Neat and Dilute Ionic Liquid Electrolytes
by Maike Käärik, Mati Arulepp, Anti Perkson and Jaan Leis
Molecules 2023, 28(20), 7191; https://doi.org/10.3390/molecules28207191 - 20 Oct 2023
Cited by 2 | Viewed by 1377
Abstract
This study investigates three carbide-derived carbon (CDC) materials (TiC, NbC, and Mo2C) characterized by uni-, bi-, and tri-modal pore sizes, respectively, for energy storage in both neat and acetonitrile-diluted 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. A distribution of micro- and mesopores was studied through low-temperature [...] Read more.
This study investigates three carbide-derived carbon (CDC) materials (TiC, NbC, and Mo2C) characterized by uni-, bi-, and tri-modal pore sizes, respectively, for energy storage in both neat and acetonitrile-diluted 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. A distribution of micro- and mesopores was studied through low-temperature N2 and CO2 adsorption. To elucidate the relationships between porosity and the electrochemical properties of carbon materials, cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy measurements were conducted using three-electrode test cells. The ultramicroporous TiC-derived carbon is characterized by a high packing density of 0.85 g cm−3, resulting in superior cathodic and anodic capacitances for both neat ionic liquid (IL) and a 1.9 M IL/acetonitrile electrolyte (93.6 and 75.8 F cm−3, respectively, in the dilute IL). However, the bi-modal pore-sized microporous NbC-derived carbon, with slightly lower cathodic and anodic capacitances (i.e., 85.0 and 73.7 F cm−3 in the dilute IL, respectively), has a lower pore resistance, making it more suitable for real-world applications. A symmetric two-electrode capacitor incorporating microporous CDC-NbC electrodes revealed an acceptable cycle life. After 10,000 cycles, the cell retained approximately 75% of its original capacitance, while the equivalent series resistance (ESR) only increased by 13%. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage Devices)
Show Figures

Graphical abstract

Back to TopTop