molecules-logo

Journal Browser

Journal Browser

The Impact of Advances in Fermentation Processes on the Chemical Composition of the Final Product

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Food Chemistry".

Deadline for manuscript submissions: closed (31 July 2024) | Viewed by 27121

Special Issue Editors


E-Mail Website
Guest Editor
Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska, Warsaw, Poland
Interests: encapsulation; fruit and vegetable juices; spray drying; micronization
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Gastronomy Sciences and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
Interests: functional food; food product development; food chemistry; bioactive compounds; antioxidant activity; nutraceuticals; natural compounds; polyphenols; flavonoids; nutritional value; food and health
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are pleased to announce a Special Issue of Molecules, with a particular focus on food chemistry, which aligns perfectly with the journal's core focus. This Special Issue aims to present state-of-the-art research articles and review articles that explore the complex world of fermentation technology and uncover new insights into chemical reactions or substances that occur.

Fermentation is a complex process that involves two primary forms: lactic acid fermentation and alcoholic fermentation. Lactic acid fermentation, also known as pickling, is a natural bioprocess that serves a dual purpose of food preservation and enhancement. This intricate process primarily involves bacterial species such as Lactobacillus, Leuconostoc, Pediococcus, Lactococcus, Enterococcus, Oenococcus, and Streptococcus (LAB). LAB possess the exceptional ability to preserve and transform raw food materials by generating a wide range of substances, which include hydrocolloids, organic acids, enzymes, flavors, and antibacterial compounds. Moreover, the byproducts of lactic acid fermentation, such as lactic acid, carbon dioxide, and ethanol, play a significant role in preventing the growth of pathogens in food. The use of lactic acid bacteria for fermenting a broad range of consumables, such as vegetables, fruits, milk, and meat, is a traditional practice. However, with the exploration of novel bacterial strains and innovative products (ranging from fruits and vegetables to even flowers) for lactic acid fermentation, a new frontier is emerging in this domain. Extensive testing is crucial in deciphering the complexities of these evolving processes, elucidating their mechanisms, and understanding their impact on the bioactive components of the substrates used.

Alcoholic fermentation is a crucial biotechnological process that involves various microorganisms, including yeast strains like Saccharomyces cerevisiae, certain bacterial species such as Zymomonas mobilis, and others. These microorganisms work together to convert sugars into ethyl alcohol and carbon dioxide, which is mainly observed in the production of fruit juices and alcoholic beverages like wine and beer.

We would like to invite researchers to submit their high-quality original research and review articles for our Special Issue. The focus of this Special Issue is on fermentation processes, particularly the use of LAB and alcoholic fermentation. We encourage contributions that explore the mechanisms involved in fermenting fruits and vegetables.

The topics to be addressed in this Special Issue include, but are not restricted to:

  • Fermentation studies, including chemical changes related to biological activity;
  • Investigation of new substrates and products that can be used in the fermentation process;
  • Evaluation of the influence of modern technologies on fermented products and their inherent properties;
  • Isolation and structure elucidation of compounds from fermented products;
  • Analytical characterization of fermented food using advanced technologies based on molecules;
  • Methods for the quality control of functional foods and nutraceuticals, including herbal and traditional medicines as explored in Molecules;
  • Structure–activity relationship between chemical constituents and their activity;
  • Chemistry-related components and their physiological, sensory, flavor, physical, and chemical properties.

We look forward to your valuable contributions and insights.

Dr. Emilia Janiszewska-Turak
Dr. Katarzyna Pobiega
Prof. Dr. Anna Gramza-Michałowska
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • lactic acid fermentation
  • alcoholic fermentation
  • fruits
  • vegetables
  • LAB

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 2272 KiB  
Article
Studying the Influence of Salt Concentrations on Betalain and Selected Physical and Chemical Properties in the Lactic Acid Fermentation Process of Red Beetroot
by Emilia Janiszewska-Turak, Anna Wierzbicka, Katarzyna Rybak, Katarzyna Pobiega, Alicja Synowiec, Łukasz Woźniak, Urszula Trych, Andrzej Krzykowski and Anna Gramza-Michałowska
Molecules 2024, 29(20), 4803; https://doi.org/10.3390/molecules29204803 - 11 Oct 2024
Viewed by 1164
Abstract
This study emphasizes the significance of optimizing salt content during the fermentation of red beetroot to produce healthier and high-quality fermented products. It investigates the impact of different salt levels on fermentation, analyzing various parameters such as pH levels, dry matter content, total [...] Read more.
This study emphasizes the significance of optimizing salt content during the fermentation of red beetroot to produce healthier and high-quality fermented products. It investigates the impact of different salt levels on fermentation, analyzing various parameters such as pH levels, dry matter content, total acidity, salt content, color changes, pigment content, and lactic acid bacteria count. This study identifies the most favorable salt concentration for bacterial growth during fermentation and storage as 2–3%. It was evaluated that salt levels fluctuated significantly during fermentation, with nearly 50% of the added salt absorbed by the beetroot tissues, mainly when lower salt concentrations were used. The fermentation process had a negative effect on the content of betalain pigments, as well as yellow pigments, including vulgaxanthin-I. It was also found that fermentation and storage affected the proportions of red pigments, with betacyanins proving to be more stable than betaxanthins, and that salt addition affected negatively pH and total acidity while causing an increase in yellow color. The pH was negatively correlated with the duration of the process, the amount of red pigment, and bacterial count. The results indicate that lower salt levels can lead to favorable physicochemical and microbiological parameters, allowing for the production of fermented red beetroot with reduced salt content without compromising quality. Full article
Show Figures

Figure 1

14 pages, 3380 KiB  
Article
Effects of Fermentation with Kombucha Symbiotic Culture of Bacteria and Yeasts on Antioxidant Activities, Bioactive Compounds and Sensory Indicators of Rhodiola rosea and Salvia miltiorrhiza Beverages
by Jin Cheng, Dan-Dan Zhou, Ruo-Gu Xiong, Si-Xia Wu, Si-Yu Huang, Adila Saimaiti, Xiao-Yu Xu, Guo-Yi Tang, Hua-Bin Li and Sha Li
Molecules 2024, 29(16), 3809; https://doi.org/10.3390/molecules29163809 - 11 Aug 2024
Viewed by 1072
Abstract
Kombucha is a well-known fermented beverage traditionally made from black tea infusion. Recent studies have focused on finding alternative materials to create novel kombucha beverages with various health benefits. In this study, we prepared and evaluated two novel kombucha beverages using Rhodiola rosea [...] Read more.
Kombucha is a well-known fermented beverage traditionally made from black tea infusion. Recent studies have focused on finding alternative materials to create novel kombucha beverages with various health benefits. In this study, we prepared and evaluated two novel kombucha beverages using Rhodiola rosea and Salvia miltiorrhiza as materials. The effects of fermentation with the residue of these plants on the kombucha were also investigated. The antioxidant activities, total phenolic contents, and concentrations of the bioactive compounds of the kombucha beverages were determined by the Trolox equivalent antioxidant capacity test, ferric-reducing antioxidant power test, Folin–Ciocalteu method, and high-performance liquid chromatography, respectively. The results revealed that the kombucha beverages made with Rhodiola rosea and Salvia miltiorrhiza had strong antioxidant capacities and abundant phenolic contents. Additionally, the kombucha fermented with Rhodiola rosea residue had higher FRAP, TEAC and TPC values than that fermented without residue. On the other hand, the Salvia miltiorrhiza kombucha fermented with residue had similar FRAP and TEAC values but lower TPC values compared to that fermented without residue. The correlation analysis showed that gallic acid, salidroside, and tyrosol were responsible for the antioxidant abilities and total phenolic contents of the Rhodiola rosea kombucha, and salvianolic acid A and salvianolic acid B contributed to the antioxidant abilities of the Salvia miltiorrhiza kombucha. Furthermore, the kombucha fermented with Rhodiola rosea residue had the highest sensory scores among the kombucha beverages studied. These findings suggest that Rhodiola rosea and Salvia miltiorrhiza are suitable for making novel kombucha beverages with strong antioxidant abilities and abundant phenolic contents, which can be used in preventing and managing oxidative stress-related diseases. Full article
Show Figures

Figure 1

15 pages, 2306 KiB  
Article
Effects of Loquat Juice Addition on Sensory Characteristics and Volatile Organic Compounds of Loquat Beer
by Junjie Li, Lang Li, Pinglian Yu, Banglei Zhang, Lina Zhao, Zhongxia Zhao, Kunyi Liu and Kaijie Kang
Molecules 2024, 29(16), 3737; https://doi.org/10.3390/molecules29163737 - 7 Aug 2024
Viewed by 894
Abstract
Beer, as an ancient and widely consumed alcoholic beverage, holds a rich cultural heritage and history. In recent years, fruit beer has gained significant attention as a distinct beer type produced by incorporating fruit juice into traditional beer ingredients. This study employed headspace [...] Read more.
Beer, as an ancient and widely consumed alcoholic beverage, holds a rich cultural heritage and history. In recent years, fruit beer has gained significant attention as a distinct beer type produced by incorporating fruit juice into traditional beer ingredients. This study employed headspace solid-phase microextraction–gas chromatography–mass spectrometry techniques, redundancy analysis, and orthogonal projections to latent structures discriminant analysis to analyze the sensory evaluation, physicochemical properties, organic acids, and volatile organic compounds (VOCs) of loquat beer with different proportions of loquat juice. The results shown that the addition of an appropriate amount of loquat juice (40%) enhanced the overall sensory quality of the beer; as the proportion of loquat juice increased, the contents of malic acid and tartaric acid significantly increased (p < 0.05). A total of 100 VOCs were identified, among which 23 key VOCs (VIP > 1, p < 0.05) represented the most important characteristic flavor components in loquat beer based on their odor activity value (OAV). This study holds significant importance for the value-added processing and economic development of loquat. Full article
Show Figures

Figure 1

17 pages, 2989 KiB  
Article
Evolution of Aroma Profiles in Vitis vinifera L. Marselan and Merlot from Grapes to Wines and Difference between Varieties
by Yi-Lin Ge, Nong-Yu Xia, Ya-Chen Wang, Hua-Lin Zhang, Wei-Ming Yang, Chang-Qing Duan and Qiu-Hong Pan
Molecules 2024, 29(14), 3250; https://doi.org/10.3390/molecules29143250 - 9 Jul 2024
Cited by 1 | Viewed by 979
Abstract
The fermentation process has a significant impact on the aromatic profile of wines, particularly in relation to the difference in fermentation matrix caused by grape varieties. This study investigates the leaching and evolution patterns of aroma compounds in Vitis vinifera L. Marselan and [...] Read more.
The fermentation process has a significant impact on the aromatic profile of wines, particularly in relation to the difference in fermentation matrix caused by grape varieties. This study investigates the leaching and evolution patterns of aroma compounds in Vitis vinifera L. Marselan and Merlot during an industrial-scale vinification process, including the stages of cold soak, alcohol fermentation, malolactic fermentation, and one-year bottle storage. The emphasis is on the differences between the two varieties. The results indicated that most alcohols were rapidly leached during the cold soak stage. Certain C6 alcohols, terpenes, and norisoprenoids showed faster leaching rates in ‘Marselan’, compared to ‘Merlot’. Some branched chain fatty-acid esters, such as ethyl 3-methylbutyrate, ethyl 2-methylbutyrate, and ethyl lactate, consistently increased during the fermentation and bottling stages, with faster accumulation observed in ‘Marselan’. The study combines the Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) model based on odor activity values to elucidate the accumulation of these ethyl esters during bottle storage, compensating for the reduction in fruity aroma resulting from decreased levels of (E)-β-damascenone. The ‘Marselan’ wine exhibited a more pronounced floral aroma due to its higher level of linalool, compared to the ‘Merlot’ wine. The study unveils the distinctive variation patterns of aroma compounds from grapes to wine across grape varieties. This provides a theoretical framework for the precise regulation of wine aroma and flavor, and holds significant production value. Full article
Show Figures

Figure 1

19 pages, 5908 KiB  
Article
Effect of Cap Management Frequency on the Phenolic, Chromatic, and Sensory Composition of Cabernet Sauvignon Wines from the Central Coast of California over Two Vintages
by L. Federico Casassa, Isabelle LoMonaco, Marcel Velasco and Dimos D. Papageorgas
Molecules 2024, 29(11), 2509; https://doi.org/10.3390/molecules29112509 - 26 May 2024
Viewed by 926
Abstract
Cabernet Sauvignon from the California Paso Robles AVA was processed with a contrasting array of cap management frequencies, consisting of punch-down (PD) frequencies (0, 1, 2, and 3 PD/day) over two vintages, one of which the fruit was harvested at two contrasting maturity [...] Read more.
Cabernet Sauvignon from the California Paso Robles AVA was processed with a contrasting array of cap management frequencies, consisting of punch-down (PD) frequencies (0, 1, 2, and 3 PD/day) over two vintages, one of which the fruit was harvested at two contrasting maturity levels. Wines followed with up to 3 years of bottle aging for basic and phenolic chemistry, and the wines of the second harvest of 2020 were submitted to sensory analysis. There were almost non-existent effects due to the frequency of punch downs on parameters such as ethanol, pH, titratable acidity, lactic acid, and glucose + fructose. In 2019, the chromatic differences between different PD regimes were subtle, and minor effects of the punch-down frequency were observed for tannins and total phenolics. During the early stages of alcoholic fermentation, higher levels of all anthocyanin classes were observed in 1 PD wines and the lowest levels in 0 PD wines. The anthocyanin content of the wines of the first harvest (unripe) was 27% higher than that of the wines of the second harvest (ripe), but these differences disappeared after 3 years of bottle aging irrespective of the vintage and harvest date. Acylated anthocyanins were preferentially lost during aging, especially in 2019 wines and, to a lesser extent, in 2020 wines. In 2020, the polymeric pigment content of the wines of the second harvest was higher than in the wines of the first harvest, with 3 PD wines showing higher polymeric pigments and yellow hues than 0 and 2 PD wines after 3 years of bottle aging. Sensory analysis of the second harvest of the 2020 wines showed that the wines of all four PD regimes were perceived as drying, signifying they were perceived as equally astringent, which is consistent with comparable tannin levels on said wines. The perception of bitterness increased with the frequency of punch downs; thus, 3 PD wines showed the highest bitterness perception. It was concluded that in sufficiently warm fermentations and small volumes, phenolic extraction occurs regardless of fruit maturity and under conditions of minimum mixing. Full article
Show Figures

Figure 1

20 pages, 1748 KiB  
Article
Studies on the Effects of Fermentation on the Phenolic Profile and Biological Activity of Three Cultivars of Kale
by Magdalena Michalak-Tomczyk, Anna Rymuszka, Wirginia Kukula-Koch, Dominik Szwajgier, Ewa Baranowska-Wójcik, Jacek Jachuła, Agnieszka Welman-Styk and Kinga Kędzierska
Molecules 2024, 29(8), 1727; https://doi.org/10.3390/molecules29081727 - 11 Apr 2024
Cited by 2 | Viewed by 1261
Abstract
Fermentation is used not only to preserve food but also to enhance its beneficial effects on human health and achieve functional foods. This study aimed to investigate how different treatments (spontaneous fermentation or fermentation with the use of starter culture) affect phenolic content, [...] Read more.
Fermentation is used not only to preserve food but also to enhance its beneficial effects on human health and achieve functional foods. This study aimed to investigate how different treatments (spontaneous fermentation or fermentation with the use of starter culture) affect phenolic content, antioxidant potential, and cholinesterase inhibitory activity in different kale cultivars: ‘Halbhoner Grüner Krauser’, ‘Scarlet’, and ‘Nero di Toscana’. Chosen samples were further tested for their protective potential against the Caco-2 cell line. HPLC-MS analysis revealed that the fermentation affected the composition of polyphenolic compounds, leading to an increase in the content of rutin, kaempferol, sinapinic, and protocatechuic acids. In general, kale cultivars demonstrated various antioxidant activities, and fermentation led to an increase in total phenolic content and antioxidant activity. Fermentation boosted anti-cholinesterase activity most profoundly in ‘Nero di Toscana’. Extracts of spontaneously fermented ‘Scarlet’ (SS) and ‘Nero di Toscana’ (NTS) showed cytoprotective properties, as revealed by the malondialdehyde (MDA), lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) assays. Additionally, strong anti-inflammatory activity of NTS was shown by decreased release of cytokines IL-1β and TNF-α. Collectively, the conducted studies suggest fermented kale cultivars as a potential source for functional foods. Full article
Show Figures

Figure 1

19 pages, 1230 KiB  
Article
New Genetic Determinants for qPCR Identification and the Enumeration of Selected Lactic Acid Bacteria in Raw-Milk Cheese
by Milena Alicja Stachelska, Adam Ekielski, Piotr Karpiński, Tomasz Żelaziński and Bartosz Kruszewski
Molecules 2024, 29(7), 1533; https://doi.org/10.3390/molecules29071533 - 29 Mar 2024
Cited by 1 | Viewed by 1104
Abstract
Lactic acid bacteria (LAB) play an important role in the ripening of cheeses and contribute to the development of the desired profile of aroma and flavor compounds. Therefore, it is very important to monitor the dynamics of bacterial proliferation in order to obtain [...] Read more.
Lactic acid bacteria (LAB) play an important role in the ripening of cheeses and contribute to the development of the desired profile of aroma and flavor compounds. Therefore, it is very important to monitor the dynamics of bacterial proliferation in order to obtain an accurate and reliable number of their cells at each stage of cheese ripening. This work aimed to identify and conduct a quantitative assessment of the selected species of autochthonous lactic acid bacteria from raw cow’s milk cheese by the development of primers and probe pairs based on the uniqueness of the genetic determinants with which the target microorganisms can be identified. For that purpose, we applied real-time quantitative PCR (qPCR) protocols to quantify Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactococcus lactis subsp. cremoris cells in cheese directly after production and over three-month and six-month ripening periods. While L. lactis subsp. cremoris shows good acidification ability and the ability to produce antimicrobial compounds, L. delbrueckii subsp. bulgaricus has good proteolytic ability and produces exo-polysaccharides, and S. thermophilus takes part in the formation of the diacetyl flavor compound by metabolizing citrate to develop aroma, they all play an important role in the cheese ripening. The proposed qPCR protocols are very sensitive and reliable methods for a precise enumeration of L. delbrueckii subsp. bulgaricus, S. thermophilus, and L. lactis subsp. cremoris in cheese samples. Full article
Show Figures

Figure 1

19 pages, 1852 KiB  
Article
Co-Fermentation of Agri-Food Residues Using a Co-Culture of Yeasts as a New Bioprocess to Produce 2-Phenylethanol
by Mariana Valdez Castillo, Satinder Kaur Brar, Sonia Arriaga, Jean-François Blais, Michèle Heitz and Antonio Avalos Ramirez
Molecules 2023, 28(14), 5536; https://doi.org/10.3390/molecules28145536 - 20 Jul 2023
Viewed by 1891
Abstract
Whey is a dairy residue generated during the production of cheese and yogurt. Whey contains mainly lactose and proteins, contributing to its high chemical oxygen demand (COD). Current environmental regulations request proper whey disposal to avoid environmental pollution. Whey components can be transformed [...] Read more.
Whey is a dairy residue generated during the production of cheese and yogurt. Whey contains mainly lactose and proteins, contributing to its high chemical oxygen demand (COD). Current environmental regulations request proper whey disposal to avoid environmental pollution. Whey components can be transformed by yeast into ethanol and biomolecules with aroma and flavor properties, for example, 2-phenyethanol (2PE), highly appreciated in the industry due to its organoleptic and biocidal properties. The present study aimed to valorize agri-food residues in 2PE by developing suitable bioprocess. Cheese whey was used as substrate source, whereas crab headshells, residual soy cake, and brewer’s spent yeast (BSY) were used as renewable nitrogen sources for the yeasts Kluyveromyces marxianus and Debaryomyces hansenii. The BSYs promoted the growth of both yeasts and the production of 2PE in flask fermentation. The bioprocess scale-up to 2 L bioreactor allowed for obtaining a 2PE productivity of 0.04 g2PE/L·h, twofold better productivity results compared to the literature. The bioprocess can save a treatment unit because the whey COD decreased under the detection limit of the analytical method, which is lower than environmental requirements. In this way, the bioprocess prevents environmental contamination and contributes to the circular economy of the dairy industry. Full article
Show Figures

Figure 1

15 pages, 3059 KiB  
Article
NMR-Based Metabolomic Study on Phaseolus vulgaris Flour Fermented by Lactic Acid Bacteria and Yeasts
by Giuseppina Tatulli, Laura Ruth Cagliani, Francesca Sparvoli, Milena Brasca and Roberto Consonni
Molecules 2023, 28(12), 4864; https://doi.org/10.3390/molecules28124864 - 20 Jun 2023
Cited by 4 | Viewed by 1669
Abstract
In recent years, fermented foods have attracted increasing attention due to their important role in the human diet, since they supply beneficial health effects, providing important sources of nutrients. In this respect, a comprehensive characterization of the metabolite content in fermented foods is [...] Read more.
In recent years, fermented foods have attracted increasing attention due to their important role in the human diet, since they supply beneficial health effects, providing important sources of nutrients. In this respect, a comprehensive characterization of the metabolite content in fermented foods is required to achieve a complete vision of physiological, microbiological, and functional traits. In the present preliminary study, the NMR-based metabolomic approach combined with chemometrics has been applied, for the first time, to investigate the metabolite content of Phaseolus vulgaris flour fermented by different lactic acid bacteria (LAB) and yeasts. A differentiation of microorganisms (LAB and yeasts), LAB metabolism (homo- and heterofermentative hexose fermentation), LAB genus (Lactobacillus, Leuconostoc, and Pediococcus), and novel genera (Lacticaseibacillus, Lactiplantibacillus, and Lentilactobacillus) was achieved. Moreover, our findings showed an increase of free amino acids and bioactive molecules, such as GABA, and a degradation of anti-nutritional compounds, such as raffinose and stachyose, confirming the beneficial effects of fermentation processes and the potential use of fermented flours in the production of healthy baking foods. Finally, among all microorganisms considered, the Lactiplantibacillus plantarum species was found to be the most effective in fermenting bean flour, as a larger amount of free amino acids were assessed in their analysis, denoting more intensive proteolytic activity. Full article
Show Figures

Figure 1

14 pages, 2421 KiB  
Article
Optimization of Medium Constituents for the Production of Citric Acid from Waste Glycerol Using the Central Composite Rotatable Design of Experiments
by Ewelina Ewa Książek, Małgorzata Janczar-Smuga, Jerzy Jan Pietkiewicz and Ewa Walaszczyk
Molecules 2023, 28(7), 3268; https://doi.org/10.3390/molecules28073268 - 6 Apr 2023
Cited by 2 | Viewed by 2090
Abstract
Citric acid is currently produced by submerged fermentation of sucrose with the aid of Aspergillus niger mold. Its strains are characterized by a high yield of citric acid biosynthesis and no toxic by-products. Currently, new substrates are sought for production of citric acid [...] Read more.
Citric acid is currently produced by submerged fermentation of sucrose with the aid of Aspergillus niger mold. Its strains are characterized by a high yield of citric acid biosynthesis and no toxic by-products. Currently, new substrates are sought for production of citric acid by submerged fermentation. Waste materials such as glycerol or pomace could be used as carbon sources in the biosynthesis of citric acid. Due to the complexity of the metabolic state in fungus, there is an obvious need to optimize the important medium constituents to enhance the accumulation of desired product. Potential optimization approach is a statistical method, such as the central composite rotatable design (CCRD). The aim of this study was to increase the yield of citric acid biosynthesis by Aspergillus niger PD-66 in media with waste glycerol as the carbon source. A mathematical method was used to optimize the culture medium composition for the biosynthesis of citric acid. In order to maximize the efficiency of the biosynthesis of citric acid the central composite, rotatable design was used. Waste glycerol and ammonium nitrate were identified as significant variables which highly influenced the final concentration of citric acid (Y1), volumetric rate of citric acid biosynthesis (Y2), and yield of citric acid biosynthesis (Y3). These variables were subsequently optimized using a central composite rotatable design. Optimal values of input variables were determined using the method of the utility function. The highest utility value of 0.88 was obtained by the following optimal set of conditions: waste glycerol—114.14 g∙L−1and NH4NO3—2.85 g∙L−1. Full article
Show Figures

Figure 1

17 pages, 1079 KiB  
Article
Mixed Cultures of Saccharomyces kudravzevii and S. cerevisiae Modify the Fermentation Process and Improve the Aroma Profile of Semi-Sweet White Wines
by Urszula Błaszczyk, Paweł Satora and Łukasz Noga
Molecules 2022, 27(21), 7478; https://doi.org/10.3390/molecules27217478 - 2 Nov 2022
Cited by 2 | Viewed by 1739
Abstract
The purpose of the study was to evaluate the impact of the Saccharomyces cerevisiae and S. kudriavzevii mixed culture on the fermentation, chemical and aromatic composition of semi-sweet white wines. The variables tested in the experiment were the initial ratio of yeast in [...] Read more.
The purpose of the study was to evaluate the impact of the Saccharomyces cerevisiae and S. kudriavzevii mixed culture on the fermentation, chemical and aromatic composition of semi-sweet white wines. The variables tested in the experiment were the initial ratio of yeast in mixed cultures and the time of inoculation of the S. kudriavzevii co-culture. The addition of S. kudriavzevii to the inoculum did not significantly change the chemical composition of the wines obtained. No reduction in ethanol yield was found in mixed culture fermented wines; however, in some variants of the experiment, the ethanol content was higher. The mixed cultures of S. cerevisiae and S. kudriavzevii increased the level of volatile compounds in white grape wines. Wines fermented with the co-culture of S. kudriavzevii were characterized by a more diversified ester profile. The mixed cultures of S. cerevisiae and S. kudriavzevii raised the levels of terpenes in white wines. The most promising results were obtained for mixed culture variants, in which S. kudriavzevii was sequentially inoculated on the sixth day of fermentation. Full article
Show Figures

Figure 1

19 pages, 753 KiB  
Article
Effect of the Addition of Buckwheat Sprouts Modified with the Addition of Saccharomyces cerevisiae var. boulardii to an Atherogenic Diet on the Metabolism of Sterols, Stanols and Fatty Acids in Rats
by Marta Molska, Julita Reguła, Anna Grygier, Agata Muzsik-Kazimierska, Magdalena Rudzińska and Anna Gramza-Michałowska
Molecules 2022, 27(14), 4394; https://doi.org/10.3390/molecules27144394 - 8 Jul 2022
Cited by 8 | Viewed by 2468
Abstract
The aim of the study was to evaluate the effect of the addition of Fagopyrum esculentum Moench buckwheat sprouts modified with the addition of Saccharomyces cerevisiae var. boulardii to an atherogenic diet on the metabolism of sterols and fatty acids in rats. It [...] Read more.
The aim of the study was to evaluate the effect of the addition of Fagopyrum esculentum Moench buckwheat sprouts modified with the addition of Saccharomyces cerevisiae var. boulardii to an atherogenic diet on the metabolism of sterols and fatty acids in rats. It was noticed in the study that the group fed with modified sprouts (HFDPRS) had a greater amount of sterols by 75.2%, compared to the group fed on an atherogenic diet (HFD). The content of cholesterol in the liver and feces was lower in the HFDPRS group than the HFD group. In the serum of the HFDPRS group, a more significant amount of the following acids was observed: C18:2 (increase by 13.5%), C20:4 (increase by 15.1%), and C22:6 (increase by 13.1%), compared to the HFDCS group. Regarding the biochemical parameters, it was noted that the group fed the diet with the addition of probiotic-rich sprouts diet had lower non-HDL, LDL-C and CRP ratios compared to the group fed the high-fat diet. The obtained results indicate that adding modified buckwheat sprouts to the diet by adding the probiotic strain of the yeast may have a significant impact on the metabolism of the indicated components in the organism. Full article
Show Figures

Figure 1

19 pages, 1525 KiB  
Article
Effect of Collagen Types, Bacterial Strains and Storage Duration on the Quality of Probiotic Fermented Sheep’s Milk
by Kamil Szopa, Agata Znamirowska-Piotrowska, Katarzyna Szajnar and Małgorzata Pawlos
Molecules 2022, 27(9), 3028; https://doi.org/10.3390/molecules27093028 - 8 May 2022
Cited by 7 | Viewed by 3180
Abstract
Collagen has become popular in dietary supplements, beverages and sports nutrition products. Therefore, the aim of this study was to evaluate the possibility of using various doses of collagen and collagen hydrolysate to produce probiotic sheep’s milk fermented with Lactobacillus acidophilus, Lacticaseibacillus casei, [...] Read more.
Collagen has become popular in dietary supplements, beverages and sports nutrition products. Therefore, the aim of this study was to evaluate the possibility of using various doses of collagen and collagen hydrolysate to produce probiotic sheep’s milk fermented with Lactobacillus acidophilus, Lacticaseibacillus casei, Lacticaseibacillus paracasei and Lacticaseibacillus rhamnosus. The effects of storage time, type and dose of collagen, and different probiotic bacteria on the physicochemical, organoleptic and microbiological properties of fermented sheep’s milk at 1 and 21 days of refrigerated storage were investigated. The addition of collagen to sheep’s milk increased the pH value after fermentation and reduced the lactic acid contents of fermented milk compared to control samples. After fermentation, the number of probiotic bacteria cells was higher than 8 log cfu g−1. In sheep’s milk fermented by L. acidophilus and L. casei, good survival of bacteria during storage was observed, and there was no effect of collagen dose on the growth and survival of both strains. The addition of collagen, both in the form of hydrolysate and bovine collagen, resulted in darkening of the color of the milk and increased the sweet taste intensity of the fermented sheep’s milk. However, the addition of hydrolysate was effective in reducing syneresis in each milk sample compared to its control counterpart. Full article
Show Figures

Figure 1

15 pages, 1606 KiB  
Article
Properties of Rice-Based Beverages Fermented with Lactic Acid Bacteria and Propionibacterium
by Patrycja Cichońska, Anna Ziębicka and Małgorzata Ziarno
Molecules 2022, 27(8), 2558; https://doi.org/10.3390/molecules27082558 - 15 Apr 2022
Cited by 16 | Viewed by 3581
Abstract
In recent times, consumers have shown increasing interest in plant substitutes for fermented dairy products. This study aimed to investigate the properties of yogurt-type rice-based beverages fermented with lactic acid bacteria and Propionibacterium. The changes in pH, viable population of bacteria, physical [...] Read more.
In recent times, consumers have shown increasing interest in plant substitutes for fermented dairy products. This study aimed to investigate the properties of yogurt-type rice-based beverages fermented with lactic acid bacteria and Propionibacterium. The changes in pH, viable population of bacteria, physical properties, and carbohydrate content of these beverages were tested. Fermentation using only Propionibacterium was insufficient to obtain a product with an acidity level similar to that of milk-based yogurt (pH < 4.5). After fermentation, the tested beverages had a high number of Lactobacillus sp. (7.42–8.23 log10 CFU/mL), Streptococcus thermophilus (8.01–8.65 log10 CFU/mL), and Bifidobacterium animalis subsp. lactis (8.28–8.50 log10 CFU/mL). The hardness (2.90–10.40 N) and adhesiveness (13.79–42.16 mJ) of the samples after 14 days of storage at 6 °C varied depending on the starter culture used. The syneresis of all samples ranged between 29% and 31%, which was lower or close to that of milk-based yogurts. The content of individual sugars in the samples also varied depending on the starter culture used for fermentation. The results suggest that the combination of lactic and propionic fermentation helps in the production of rice-based yogurt-type milk substitutes. Full article
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 4551 KiB  
Review
Advancements in the Heterologous Expression of Sucrose Phosphorylase and Its Molecular Modification for the Synthesis of Glycosylated Products
by Hongyu Zhang, Leting Zhu, Zixuan Zhou, Danyun Wang, Jinshan Yang, Suying Wang and Tingting Lou
Molecules 2024, 29(17), 4086; https://doi.org/10.3390/molecules29174086 - 28 Aug 2024
Viewed by 1046
Abstract
Sucrose phosphorylase (SPase), a member of the glycoside hydrolase GH13 family, possesses the ability to catalyze the hydrolysis of sucrose to generate α-glucose-1-phosphate and can also glycosylate diverse substrates, showcasing a wide substrate specificity. This enzyme has found extensive utility in the fields [...] Read more.
Sucrose phosphorylase (SPase), a member of the glycoside hydrolase GH13 family, possesses the ability to catalyze the hydrolysis of sucrose to generate α-glucose-1-phosphate and can also glycosylate diverse substrates, showcasing a wide substrate specificity. This enzyme has found extensive utility in the fields of food, medicine, and cosmetics, and has garnered significant attention as a focal point of research in transglycosylation enzymes. Nevertheless, SPase encounters numerous obstacles in industrial settings, including low enzyme yield, inadequate thermal stability, mixed regioselectivity, and limited transglycosylation activity. In-depth exploration of efficient expression strategies and molecular modifications based on the crystal structure and functional information of SPase is now a critical research priority. This paper systematically reviews the source microorganisms, crystal structure, and catalytic mechanism of SPase, summarizes diverse heterologous expression systems based on expression hosts and vectors, and examines the application and molecular modification progress of SPase in synthesizing typical glycosylated products. Additionally, it anticipates the broad application prospects of SPase in industrial production and related research fields, laying the groundwork for its engineering modification and industrial application. Full article
Show Figures

Graphical abstract

Back to TopTop