molecules-logo

Journal Browser

Journal Browser

Natural Toxins/Molecules (and Derivatives) from Animal Venoms: From Basic Research to Therapeutic Applications

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Medicinal Chemistry".

Deadline for manuscript submissions: closed (1 October 2018) | Viewed by 82934

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Neurophysiopathology (INP), Aix-Marseille University, Faculté des sciences médicales et paramédicales, 27, Bd Jean Moulin, 13005 Marseille, France
Interests: antimicrobial peptides; antibacterial; antibiotics; structure-activity relationships; bacteriocins; drug design; peptide engineering
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Venomous animals (e.g., scorpions, snakes, sea anemones, cone snails, worms, wasps and frogs) are invaluable natural sources of biologically-active compounds that target a variety of receptors/molecules (ion channels, enzymes, etc.). These compounds are generally highly potent, but can display variable selectivities. Interestingly, a number of molecules from venoms reportedly possess some therapeutic potential to treat pain, microbial infections, and more or less severe pathologies such as cancer, autoimmune and neurological diseases. This special issue of ‘Molecules’ is devoted to the many aspects of marine and non-marine toxins/molecules (and derivatives thereof) from animal venoms, including their pharmacological properties, structural characteristics, structure-function relationship, molecular engineering/drug design, and therapeutic value. All scientists and clinicians working in these emerging and promising fields of research are strongly encouraged to submit their original works for publication in this Special Issue.

Dr. Jean-Marc Sabatier
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • venom
  • animal toxin
  • venomous animal
  • toxin engineering
  • drug design
  • structure-activity
  • chemotherapeutic drug
  • therapy
  • ion channel
  • antimicrobial
  • analgesic
  • antitumor/anticancer
  • autoimmune disease
  • neurological disorder

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (14 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 2059 KiB  
Article
A Novel Venom-Derived Peptide for Brachytherapy of Glioblastoma: Preclinical Studies in Mice
by Steve Swenson, Radu O. Minea, Cao Duc Tuan, Thu-Zan Thein, Thomas C. Chen and Francis S. Markland
Molecules 2018, 23(11), 2918; https://doi.org/10.3390/molecules23112918 - 8 Nov 2018
Cited by 13 | Viewed by 4567
Abstract
We developed a bacterial expression system to produce a recombinant disintegrin, vicrostatin (VCN), whose structure is based on a natural disintegrin isolated from southern copperhead snake venom. Our goal is to develop VCN for potential clinical translation as an anti-cancer agent. VCN is [...] Read more.
We developed a bacterial expression system to produce a recombinant disintegrin, vicrostatin (VCN), whose structure is based on a natural disintegrin isolated from southern copperhead snake venom. Our goal is to develop VCN for potential clinical translation as an anti-cancer agent. VCN is a peptide of 69 amino acids with a single tyrosine residue. We have employed VCN as integrin-targeted radionuclide therapy (brachytherapy) for treatment of glioblastoma (GBM, glioma). GBM is a deadly brain cancer that doesn’t discriminate between sexes and knows no age limit. We established that the tyrosine residue in VCN can be radioiodinated with full retention of bioactivity. 131I-VCN was utilized for integrin-targeted radionuclide therapy using mouse models of glioma. The combination of radioiodinated VCN plus temozolomide (a DNA alkylating agent) significantly prolonged survival of glioma-bearing mice. We also obtained similar results using an immunocompetent mouse model and a murine glioma cell line. In summary, as demonstrated in studies reported here we have shown that VCN as targeted radionuclide therapy for GBM has significant translational potential for therapy of this deadly disease. Full article
Show Figures

Figure 1

12 pages, 1847 KiB  
Article
NMR Structure of μ-Conotoxin GIIIC: Leucine 18 Induces Local Repacking of the N-Terminus Resulting in Reduced NaV Channel Potency
by Peta J. Harvey, Nyoman D. Kurniawan, Rocio K. Finol-Urdaneta, Jeffrey R. McArthur, Dorien Van Lysebetten, Thomas S. Dash, Justine M. Hill, David J. Adams, Thomas Durek and David J. Craik
Molecules 2018, 23(10), 2715; https://doi.org/10.3390/molecules23102715 - 22 Oct 2018
Cited by 4 | Viewed by 4043
Abstract
μ-Conotoxins are potent and highly specific peptide blockers of voltage-gated sodium channels. In this study, the solution structure of μ-conotoxin GIIIC was determined using 2D NMR spectroscopy and simulated annealing calculations. Despite high sequence similarity, GIIIC adopts a three-dimensional structure that differs from [...] Read more.
μ-Conotoxins are potent and highly specific peptide blockers of voltage-gated sodium channels. In this study, the solution structure of μ-conotoxin GIIIC was determined using 2D NMR spectroscopy and simulated annealing calculations. Despite high sequence similarity, GIIIC adopts a three-dimensional structure that differs from the previously observed conformation of μ-conotoxins GIIIA and GIIIB due to the presence of a bulky, non-polar leucine residue at position 18. The side chain of L18 is oriented towards the core of the molecule and consequently the N-terminus is re-modeled and located closer to L18. The functional characterization of GIIIC defines it as a canonical μ-conotoxin that displays substantial selectivity towards skeletal muscle sodium channels (NaV), albeit with ~2.5-fold lower potency than GIIIA. GIIIC exhibited a lower potency of inhibition of NaV1.4 channels, but the same NaV selectivity profile when compared to GIIIA. These observations suggest that single amino acid differences that significantly affect the structure of the peptide do in fact alter its functional properties. Our work highlights the importance of structural factors, beyond the disulfide pattern and electrostatic interactions, in the understanding of the functional properties of bioactive peptides. The latter thus needs to be considered when designing analogues for further applications. Full article
Show Figures

Figure 1

11 pages, 1720 KiB  
Article
Inactivation of Venom PLA2 Alleviates Myonecrosis and Facilitates Muscle Regeneration in Envenomed Mice: A Time Course Observation
by Huixiang Xiao, Haoran Li, Denghong Zhang, Yuanyuan Li, Shimin Sun and Chunhong Huang
Molecules 2018, 23(8), 1911; https://doi.org/10.3390/molecules23081911 - 31 Jul 2018
Cited by 13 | Viewed by 4635
Abstract
Snake venom is a complex cocktail of toxins which induces a series of clinical and pathophysiological manifestations in victims, including severe local tissue damage and systemic alterations. Deinagkistrodon acutus (D. acutus) ranks among the “big four” life-threatening venomous species in China, [...] Read more.
Snake venom is a complex cocktail of toxins which induces a series of clinical and pathophysiological manifestations in victims, including severe local tissue damage and systemic alterations. Deinagkistrodon acutus (D. acutus) ranks among the “big four” life-threatening venomous species in China, whose venom possesses strong myotoxicity and hematotoxicity that often lead to permanent disability or muscle atrophy. Varespladib, an inhibitor of mammalian phospholipase A2 (PLA2), has been recently reproposed as an effective antidote against snakebite envenomation. The present study aimed at evaluating the protective role of varespladib on muscle regeneration in envenomed mice. Mice were grouped and subjected to inoculation with D. acutus venom or a mixture of venom and varespladib or control vehicle in the gastrocnemius muscle. Local injuries including hemorrhage, myonecrosis, ulceration, and systemic damages including general dysfunction, visceral failure, and inflammatory responses were observed at 1, 3, 7, 14, and 21 days. The results indicated that most of the muscle myonecrosis and hemorrhage were alleviated by varespladib. Besides, the pretreated mice recovered rapidly with lesser atrophy and muscle fibrosis. In conclusion, the findings of the present study suggested that varespladib is an effective antidote that could neutralize D. acutus venom and allow for earlier and improved rehabilitation outcome. Full article
Show Figures

Figure 1

18 pages, 2605 KiB  
Article
Comprehensive Snake Venomics of the Okinawa Habu Pit Viper, Protobothrops flavoviridis, by Complementary Mass Spectrometry-Guided Approaches
by Maik Damm, Benjamin-Florian Hempel, Ayse Nalbantsoy and Roderich D. Süssmuth
Molecules 2018, 23(8), 1893; https://doi.org/10.3390/molecules23081893 - 29 Jul 2018
Cited by 16 | Viewed by 7409
Abstract
The Asian world is home to a multitude of venomous and dangerous snakes, which are used to induce various medical effects in the preparation of traditional snake tinctures and alcoholics, like the Japanese snake wine, named Habushu. The aim of this work was [...] Read more.
The Asian world is home to a multitude of venomous and dangerous snakes, which are used to induce various medical effects in the preparation of traditional snake tinctures and alcoholics, like the Japanese snake wine, named Habushu. The aim of this work was to perform the first quantitative proteomic analysis of the Protobothrops flavoviridis pit viper venom. Accordingly, the venom was analyzed by complimentary bottom-up and top-down mass spectrometry techniques. The mass spectrometry-based snake venomics approach revealed that more than half of the venom is composed of different phospholipases A2 (PLA2). The combination of this approach and an intact mass profiling led to the identification of the three main Habu PLA2s. Furthermore, nearly one-third of the total venom consists of snake venom metalloproteinases and disintegrins, and several minor represented toxin families were detected: C-type lectin-like proteins (CTL), cysteine-rich secretory proteins (CRISP), snake venom serine proteases (svSP), l-amino acid oxidases (LAAO), phosphodiesterase (PDE) and 5′-nucleotidase. Finally, the venom of P. flavoviridis contains certain bradykinin-potentiating peptides and related peptides, like the svMP inhibitors, pEKW, pEQW, pEEW and pENW. In preliminary MTT cytotoxicity assays, the highest cancerous-cytotoxicity of crude venom was measured against human neuroblastoma SH-SY5Y cells and shows disintegrin-like effects in some fractions. Full article
Show Figures

Graphical abstract

14 pages, 511 KiB  
Article
A3, a Scorpion Venom Derived Peptide Analogue with Potent Antimicrobial and Potential Antibiofilm Activity against Clinical Isolates of Multi-Drug Resistant Gram Positive Bacteria
by Ammar Almaaytah, Ahmad Farajallah, Ahmad Abualhaijaa and Qosay Al-Balas
Molecules 2018, 23(7), 1603; https://doi.org/10.3390/molecules23071603 - 2 Jul 2018
Cited by 25 | Viewed by 4779
Abstract
Current research in the field of antimicrobials is focused on developing novel antimicrobial agents to counteract the huge dilemma that the human population is mainly facing in regards to the rise of bacterial resistance and biofilm infections. Host defense peptides (HDPs) are a [...] Read more.
Current research in the field of antimicrobials is focused on developing novel antimicrobial agents to counteract the huge dilemma that the human population is mainly facing in regards to the rise of bacterial resistance and biofilm infections. Host defense peptides (HDPs) are a promising group of molecules for antimicrobial development as they display several attractive features suitable for antimicrobial activity, including their broad spectrum of activity and potency against bacteria. AamAP1 is a novel HDP that belongs to the venom of the North African scorpion Androctonus amoeruxi. In vitro antimicrobial assays revealed that the peptide displays moderate activity against Gram-positive and Gram-negative bacteria. Additionally, the peptide proved to be highly hemolytic and displayed significantly high toxicity against mammalian cells. In our study, a novel synthetic peptide analogue named A3 was synthetically modified from AamAP1 in order to enhance its activity and toxicity profile. The design strategy depended on modifying the amino acid sequence of AamAP1 in order to alter its net positive charge, percentage helicity and modify other parameters that are involved theoretically in HDPs activity. Accordingly, A3 was evaluated for its in vitro antimicrobial and anti-biofilm activity individually and in combination with four different types of conventional antibiotics against clinical isolates of multi-drug resistant (MDR) Gram-positive bacteria. A3 was also evaluated for its cytotoxicity against mammalian cells. A3 managed to selectively inhibit the growth of a wide range of resistant strains of Gram-positive bacteria. Our results also showed that combining A3 with conventional antibiotics caused a synergistic antimicrobial behavior that resulted in decreasing the MIC value for A3 peptide as low as 0.125 µM. At the concentrations needed to inhibit bacterial growth, A3 displayed minimal mammalian cell toxicity. In conclusion, A3 exhibits enhanced activity and selectivity when compared with the parent natural scorpion venom peptide. The combination of A3 with conventional antibiotics could provide researchers in the antimicrobial drug development field with a potential alternative for conventional antibiotics against MDR bacteria. Full article
Show Figures

Figure 1

10 pages, 2614 KiB  
Article
Mouse β-Defensin 3, A Defensin Inhibitor of Both Its Endogenous and Exogenous Potassium Channels
by Yaoyun Zhang, Yonghui Zhao, Hongyue Liu, Weiwei Yu, Fan Yang, Wenhua Li, Zhijian Cao and Yingliang Wu
Molecules 2018, 23(6), 1489; https://doi.org/10.3390/molecules23061489 - 20 Jun 2018
Cited by 5 | Viewed by 4259
Abstract
The human defensins are recently discovered to inhibit potassium channels, which are classical targets of the animal toxins. Whether other vertebrate defensins are potassium channel inhibitors remains unknown. In this work, we reported that the mouse β-defensin 3 (mBD3) was a novel inhibitor [...] Read more.
The human defensins are recently discovered to inhibit potassium channels, which are classical targets of the animal toxins. Whether other vertebrate defensins are potassium channel inhibitors remains unknown. In this work, we reported that the mouse β-defensin 3 (mBD3) was a novel inhibitor of both endogenous and exogenous potassium channels. The structural analysis showed that mBD3 is the most identical to human Kv1.3 channel-sensitive human β-defensin 2 (hBD2). However, the pharmacological profiles indicated that the recombinant mBD3 (rmBD3) weakly inhibited the mouse and human Kv1.3 channels. Different from the pharmacological features of human β-defensins, mBD3 more selectively inhibited the mouse Kv1.6 and human KCNQ1/KCNE1 channels with IC50 values of 0.6 ± 0.4 μM and 1.2 ± 0.8 μM, respectively. The site directed mutagenesis experiments indicated that the extracellular pore region of mouse Kv1.6 channel was the interaction site of rmBD3. In addition, the minor effect on the channel conductance-voltage relationship curves implied that mBD3 might bind the extracellular transmembrane helices S1-S2 linker and/or S3-S4 linker of mouse Kv1.6 channel. Together, these findings not only revealed mBD3 as a novel inhibitor of both endogenous and exogenous potassium channels, but also provided a clue to investigate the role of mBD3-Kv1.6 channel interaction in the physiological and pathological field in the future. Full article
Show Figures

Figure 1

16 pages, 2577 KiB  
Article
Cytotoxic, Anti-Proliferative and Apoptosis Activity of l-Amino Acid Oxidase from Malaysian Cryptelytrops purpureomaculatus (CP-LAAO) Venom on Human Colon Cancer Cells
by Syafiq Asnawi Zainal Abidin, Pathmanathan Rajadurai, Md. Ezharul Hoque Chowdhury, Iekhsan Othman and Rakesh Naidu
Molecules 2018, 23(6), 1388; https://doi.org/10.3390/molecules23061388 - 8 Jun 2018
Cited by 18 | Viewed by 4696
Abstract
The aim of this study is to investigate the potential anti-cancer activity of l-amino acid oxidase (CP-LAAO) purified from the venom of Cryptelytrops purpureomaculatus on SW480 and SW620 human colon cancer cells. Mass spectrometry guided purification was able to identify and purify [...] Read more.
The aim of this study is to investigate the potential anti-cancer activity of l-amino acid oxidase (CP-LAAO) purified from the venom of Cryptelytrops purpureomaculatus on SW480 and SW620 human colon cancer cells. Mass spectrometry guided purification was able to identify and purify CP-LAAO. Amino acid variations identified from the partial protein sequence of CP-LAAO may suggest novel variants of these proteins. The activity of the purified CP-LAAO was confirmed with o-phenyldiamine (OPD)-based spectrophotometric assay. CP-LAAO demonstrated time- and dose-dependent cytotoxic activity and the EC50 value was determined at 13 µg/mL for both SW480 and SW620 cells. Significant increase of caspase-3 activity, reduction of Bcl-2 levels, as well as morphological changes consistent with apoptosis were demonstrated by CP-LAAO. Overall, these data provide evidence on the potential anti-cancer activity of CP-LAAO from the venom of Malaysian C. purpureomaculatus for therapeutic intervention of human colon cancer. Full article
Show Figures

Figure 1

15 pages, 39278 KiB  
Article
Co-Localization of Crotamine with Internal Membranes and Accentuated Accumulation in Tumor Cells
by Nicole Caroline Mambelli-Lisboa, Juliana Mozer Sciani, Alvaro Rossan Brandão Prieto da Silva and Irina Kerkis
Molecules 2018, 23(4), 968; https://doi.org/10.3390/molecules23040968 - 20 Apr 2018
Cited by 18 | Viewed by 6278
Abstract
Crotamine is a highly cationic; cysteine rich, cross-linked, low molecular mass cell penetrating peptide (CPP) from the venom of the South American rattlesnake. Potential application of crotamine in biomedicine may require its large-scale purification. To overcome difficulties related with the purification of natural [...] Read more.
Crotamine is a highly cationic; cysteine rich, cross-linked, low molecular mass cell penetrating peptide (CPP) from the venom of the South American rattlesnake. Potential application of crotamine in biomedicine may require its large-scale purification. To overcome difficulties related with the purification of natural crotamine (nCrot) we aimed in the present study to synthesize and characterize a crotamine analog (sCrot) as well investigate its CPP activity. Mass spectrometry analysis demonstrates that sCrot and nCrot have equal molecular mass and biological function—the capacity to induce spastic paralysis in the hind limbs in mice. sCrot CPP activity was evaluated in a wide range of tumor and non-tumor cell tests performed at different time points. We demonstrate that sCrot-Cy3 showed distinct co-localization patterns with intracellular membranes inside the tumor and non-tumor cells. Time-lapse microscopy and quantification of sCrot-Cy3 fluorescence signalss in living tumor versus non-tumor cells revealed a significant statistical difference in the fluorescence intensity observed in tumor cells. These data suggest a possible use of sCrot as a molecular probe for tumor cells, as well as, for the selective delivery of anticancer molecules into these tumors. Full article
Show Figures

Graphical abstract

13 pages, 3556 KiB  
Article
Exploration of the Inhibitory Potential of Varespladib for Snakebite Envenomation
by Yiding Wang, Jing Zhang, Denghong Zhang, Huixiang Xiao, Shengwei Xiong and Chunhong Huang
Molecules 2018, 23(2), 391; https://doi.org/10.3390/molecules23020391 - 12 Feb 2018
Cited by 62 | Viewed by 6130 | Correction
Abstract
Phospholipase A2s (PLA2) is a major component of snake venom with diverse pathologic toxicities and, therefore, a potential target for antivenom therapy. Varespladib was initially designed as an inhibitor of mammal PLA2s, and was recently repurposed to [...] Read more.
Phospholipase A2s (PLA2) is a major component of snake venom with diverse pathologic toxicities and, therefore, a potential target for antivenom therapy. Varespladib was initially designed as an inhibitor of mammal PLA2s, and was recently repurposed to a broad-spectrum inhibitor of PLA2 in snake venom. To evaluate the protective abilities of varespladib to hemorrhage, myonecrosis, and systemic toxicities that are inflicted by different crude snake venoms, subcutaneous ecchymosis, muscle damage, and biochemical variation in serum enzymes derived from the envenomed mice were determined, respectively. Varespladib treatment showed a significant inhibitory effect to snake venom PLA2, which was estimated by IC50 in vitro and ED50 in vivo. In animal models, the severely hemorrhagic toxicity of D. acutus and A. halys venom was almost fully inhibited after administration of varespladib. Moreover, signs of edema in gastrocnemius muscle were remarkably attenuated by administration of varespladib, with a reduced loss of myonecrosis and desmin. Serum levels of creatine kinase, lactate dehydrogenase isoenzyme 1, aspartate transaminase, and alanine transaminase were down-regulated after treatment with varespladib, which indicated the protection to viscera injury. In conclusion, varespladib may be a potential first-line drug candidate in snakebite envenomation first aid or clinical therapy. Full article
Show Figures

Figure 1

10 pages, 1438 KiB  
Article
Anti-Inflammatory Effect of Melittin on Porphyromonas Gingivalis LPS-Stimulated Human Keratinocytes
by Woon-Hae Kim, Hyun-Jin An, Jung-Yeon Kim, Mi-Gyeong Gwon, Hyemin Gu, Minji Jeon, Min-Kyung Kim, Sang-Mi Han and Kwan-Kyu Park
Molecules 2018, 23(2), 332; https://doi.org/10.3390/molecules23020332 - 5 Feb 2018
Cited by 37 | Viewed by 8015
Abstract
Periodontitis is a chronic inflammatory disease that contributes to the destruction of the gingiva. Porphyromonas gingivalis (P. gingivalis) can cause periodontitis via its pathogenic lipopolysaccharides (LPS). Melittin, a major component of bee venom, is known to have anti-inflammatory and antibacterial effects. [...] Read more.
Periodontitis is a chronic inflammatory disease that contributes to the destruction of the gingiva. Porphyromonas gingivalis (P. gingivalis) can cause periodontitis via its pathogenic lipopolysaccharides (LPS). Melittin, a major component of bee venom, is known to have anti-inflammatory and antibacterial effects. However, the role of melittin in the inflammatory response has not been elucidated in periodontitis-like human keratinocytes. Therefore, we investigated the anti-inflammatory effects of melittin on a P. gingivalis LPS (PgLPS)-treated HaCaT human keratinocyte cell line. The cytotoxicity of melittin was measured using a human keratinocyte cell line, HaCaT, and a Cell Counting Kit-8. The effect of melittin on PgLPS-induced inflammation was determined with Western blot, real-time quantitative PCT, and immunofluorescence. PgLPS increased the expression of toll-like receptor (TLR) 4 and proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-8, and interferon-γ (IFN-γ). Moreover, PgLPS induced activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), extracellular signal-regulated kinase (ERK), and protein kinase B/Akt. Melittin also inhibited the expression of proinflammatory cytokines by suppressing the activation of the NF-κB signaling pathway, ERK, and Akt. Melittin attenuates the PgLPS-induced inflammatory response and could therefore be applied in the treatment of periodontitis for anti-inflammatory effects. Full article
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 761 KiB  
Review
Vipers of the Middle East: A Rich Source of Bioactive Molecules
by Mohamad Rima, Seyedeh Maryam Alavi Naini, Marc Karam, Riyad Sadek, Jean-Marc Sabatier and Ziad Fajloun
Molecules 2018, 23(10), 2721; https://doi.org/10.3390/molecules23102721 - 22 Oct 2018
Cited by 13 | Viewed by 6668
Abstract
Snake venom serves as a tool of defense against threat and helps in prey digestion. It consists of a mixture of enzymes, such as phospholipase A2, metalloproteases, and l-amino acid oxidase, and toxins, including neurotoxins and cytotoxins. Beside their toxicity, venom components [...] Read more.
Snake venom serves as a tool of defense against threat and helps in prey digestion. It consists of a mixture of enzymes, such as phospholipase A2, metalloproteases, and l-amino acid oxidase, and toxins, including neurotoxins and cytotoxins. Beside their toxicity, venom components possess many pharmacological effects and have been used to design drugs and as biomarkers of diseases. Viperidae is one family of venomous snakes that is found nearly worldwide. However, three main vipers exist in the Middle Eastern region: Montivipera bornmuelleri, Macrovipera lebetina, and Vipera (Daboia) palaestinae. The venoms of these vipers have been the subject of many studies and are considered as a promising source of bioactive molecules. In this review, we present an overview of these three vipers, with a special focus on their venom composition as well as their biological activities, and we discuss further frameworks for the exploration of each venom. Full article
Show Figures

Graphical abstract

19 pages, 570 KiB  
Review
Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins
by Wei Yuen Yap and Jung Shan Hwang
Molecules 2018, 23(10), 2537; https://doi.org/10.3390/molecules23102537 - 4 Oct 2018
Cited by 14 | Viewed by 4969
Abstract
A group of stable, water-soluble and membrane-bound proteins constitute the pore forming toxins (PFTs) in cnidarians. They interact with membranes to physically alter the membrane structure and permeability, resulting in the formation of pores. These lesions on the plasma membrane causes an imbalance [...] Read more.
A group of stable, water-soluble and membrane-bound proteins constitute the pore forming toxins (PFTs) in cnidarians. They interact with membranes to physically alter the membrane structure and permeability, resulting in the formation of pores. These lesions on the plasma membrane causes an imbalance of cellular ionic gradients, resulting in swelling of the cell and eventually its rupture. Of all cnidarian PFTs, actinoporins are by far the best studied subgroup with established knowledge of their molecular structure and their mode of pore-forming action. However, the current view of necrotic action by actinoporins may not be the only mechanism that induces cell death since there is increasing evidence showing that pore-forming toxins can induce either necrosis or apoptosis in a cell-type, receptor and dose-dependent manner. In this review, we focus on the response of the cellular immune system to the cnidarian pore-forming toxins and the signaling pathways that might be involved in these cellular responses. Since PFTs represent potential candidates for targeted toxin therapy for the treatment of numerous cancers, we also address the challenge to overcoming the immunogenicity of these toxins when used as therapeutics. Full article
Show Figures

Figure 1

19 pages, 3199 KiB  
Review
The Biological and Biophysical Properties of the Spider Peptide Gomesin
by John D. Tanner, Evelyne Deplazes and Ricardo L. Mancera
Molecules 2018, 23(7), 1733; https://doi.org/10.3390/molecules23071733 - 16 Jul 2018
Cited by 17 | Viewed by 5333
Abstract
This review summarises the current knowledge of Gomesin (Gm), an 18-residue long, cationic anti-microbial peptide originally isolated from the haemocytes of the Brazilian tarantula Acanthoscurria gomesiana. The peptide shows potent cytotoxic activity against clinically relevant microbes including Gram-positive and Gram-negative bacteria, fungi, and [...] Read more.
This review summarises the current knowledge of Gomesin (Gm), an 18-residue long, cationic anti-microbial peptide originally isolated from the haemocytes of the Brazilian tarantula Acanthoscurria gomesiana. The peptide shows potent cytotoxic activity against clinically relevant microbes including Gram-positive and Gram-negative bacteria, fungi, and parasites. In addition, Gm shows in-vitro and in-vivo anti-cancer activities against several human and murine cancers. The peptide exerts its cytotoxic activity by permeabilising cell membranes, but the underlying molecular mechanism of action is still unclear. Due to its potential as a therapeutic agent, the structure and membrane-binding properties, as well as the leakage and cytotoxic activities of Gm have been studied using a range of techniques. This review provides a summary of these studies, with a particular focus on biophysical characterisation studies of peptide variants that have attempted to establish a structure-activity relationship. Future studies are still needed to rationalise the binding affinity and cell-type-specific selectivity of Gm and its variants, while more pre-clinical studies are required to develop Gm into a therapeutically useful peptide. Full article
Show Figures

Graphical abstract

21 pages, 601 KiB  
Review
Anticancer Activity of Toxins from Bee and Snake Venom—An Overview on Ovarian Cancer
by Marius Alexandru Moga, Oana Gabriela Dimienescu, Cristian Andrei Arvătescu, Petru Ifteni and Liana Pleş
Molecules 2018, 23(3), 692; https://doi.org/10.3390/molecules23030692 - 19 Mar 2018
Cited by 43 | Viewed by 10040
Abstract
Cancer represents the disease of the millennium, a major problem in public health. The proliferation of tumor cells, angiogenesis, and the relationship between the cancer cells and the components of the extracellular matrix are important in the events of carcinogenesis, and these pathways [...] Read more.
Cancer represents the disease of the millennium, a major problem in public health. The proliferation of tumor cells, angiogenesis, and the relationship between the cancer cells and the components of the extracellular matrix are important in the events of carcinogenesis, and these pathways are being used as targets for new anticancer treatments. Various venoms and their toxins have shown possible anticancer effects on human cancer cell lines, providing new perspectives in drug development. In this review, we observed the effects of natural toxins from bee and snake venom and the mechanisms through which they can inhibit the growth and proliferation of cancer cells. We also researched how several types of natural molecules from venom can sensitize ovarian cancer cells to conventional chemotherapy, with many toxins being helpful for developing new anticancer drugs. This approach could improve the efficiency of standard therapies and could allow the administration of decreased doses of chemotherapy. Natural toxins from bee and snake venom could become potential candidates for the future treatment of different types of cancer. It is important to continue these studies concerning therapeutic drugs from natural resource and, more importantly, to investigate their mechanism of action on cancer cells. Full article
Show Figures

Figure 1

Back to TopTop