molecules-logo

Journal Browser

Journal Browser

Counteracting Drug Resistant Mechanisms in Cancer

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Bioorganic Chemistry".

Deadline for manuscript submissions: closed (15 January 2018) | Viewed by 58760

Special Issue Editor


E-Mail Website
Guest Editor
1. FFUP – Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Potugal
2. i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
Interests: cancer drug resistance; cancer multidrug resistance; intercellular transfer of drug resistance mediated by Extracellular Vesicles (EVs); new approaches to overcome drug resistance; drug-efflux pumps; escape from apoptosis; autophagy; metabolic alterations associated with drug resistance; tumour-microenvironment interactions; cancer stem cells; microRNAs; biomarkers of minimal residual disease and of drug resistance
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Drug resistance is a major obstacle to the successful treatment of cancer patients. The intratumor genetic heterogeneity and tumor dynamics, together with the presence of cancer stem cells, make it a very difficult problem to overcome. This Special Issue of Molecules aims to collect review and research articles on novel approaches for counteracting drug resistant mechanisms in cancer. Topics may include: i) novel compounds or small molecules designed to inhibit targets known to be responsible for chemoresistance (e.g. drug-efflux pumps or antiapoptotic proteins), ii) natural compounds that circumvent drug resistance, iii) molecules that target cancer stem cells, iv) antimiRs or siRNAs designed to inhibit targets responsible for chemoresistance, or v) drug delivery approaches to improve drug response.

Prof. Dr. M. Helena Vasconcelos
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cancer
  • drug resistance
  • multidrug resistance
  • chemoresistance
  • chemosensitisation
  • drug-efflux pumps
  • ATP-binding cassette (ABC) transporters
  • cell death
  • apoptosis; autophagy
  • p53
  • mutations
  • DNA repair
  • tumour-microenvironment interactions
  • EMT
  • cancer stem cells
  • natural products
  • small molecules
  • siRNAs
  • microRNAs
  • antimiRs
  • drug delivery
  • nanotechnology
  • liposomes
  • extracellular vesicles

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 4713 KiB  
Article
New Tetrahydroisoquinoline Derivatives Overcome Pgp Activity in Brain-Blood Barrier and Glioblastoma Multiforme in Vitro
by Iris Chiara Salaroglio, Elena Gazzano, Joanna Kopecka, Konstantin Chegaev, Costanzo Costamagna, Roberta Fruttero, Stefano Guglielmo and Chiara Riganti
Molecules 2018, 23(6), 1401; https://doi.org/10.3390/molecules23061401 - 9 Jun 2018
Cited by 14 | Viewed by 4203
Abstract
P-glycoprotein (Pgp) determines resistance to a broad spectrum of drugs used against glioblastoma multiforme (GB). Indeed, Pgp is highly expressed in GB stem cells and in the brain-blood barrier (BBB), the peculiar endothelium surrounding the brain. Inhibiting Pgp activity in the BBB and [...] Read more.
P-glycoprotein (Pgp) determines resistance to a broad spectrum of drugs used against glioblastoma multiforme (GB). Indeed, Pgp is highly expressed in GB stem cells and in the brain-blood barrier (BBB), the peculiar endothelium surrounding the brain. Inhibiting Pgp activity in the BBB and GB is still an open challenge. Here, we tested the efficacy of a small library of tetrahydroisoquinoline derivatives with an EC50 for Pgp ≤ 50 nM, in primary human BBB cells and in patient-derived GB samples, from which we isolated differentiated/adherent cells (AC, i.e., Pgp-negative/doxorubicin-sensitive cells) and stem cells (neurospheres, NS, i.e., Pgp-positive/doxorubicin-resistant cells). Three compounds used at 1 nM increased the delivery of doxorubicin, a typical substrate of Pgp, across BBB monolayer, without altering the expression and activity of other transporters. The compounds increased the drug accumulation within NS, restoring doxorubicin-induced necrosis and apoptosis, and reducing cell viability. In co-culture systems, the compounds added to the luminal face of BBB increased the delivery of doxorubicin to NS growing under BBB and rescued the drug’s cytotoxicity. Our work identified new ligands of Pgp active at low nanomolar concentrations. These compounds reduce Pgp activity in BBB and GB and improve in vitro chemotherapy efficacy in this tumor. Full article
(This article belongs to the Special Issue Counteracting Drug Resistant Mechanisms in Cancer)
Show Figures

Figure 1

16 pages, 4546 KiB  
Article
New and Old Genes Associated with Primary and Established Responses to Paclitaxel Treatment in Ovarian Cancer Cell Lines
by Monika Świerczewska, Andrzej Klejewski, Maciej Brązert, Dominika Kaźmierczak, Dariusz Iżycki, Michał Nowicki, Maciej Zabel and Radosław Januchowski
Molecules 2018, 23(4), 891; https://doi.org/10.3390/molecules23040891 - 12 Apr 2018
Cited by 18 | Viewed by 4186
Abstract
Development of drug resistance is the main reason for low chemotherapy effectiveness in treating ovarian cancer. Paclitaxel (PAC) is a chemotherapeutic drug used in the treatment of this cancer. We analysed the development of PAC resistance in two ovarian cancer cell lines. Exposure [...] Read more.
Development of drug resistance is the main reason for low chemotherapy effectiveness in treating ovarian cancer. Paclitaxel (PAC) is a chemotherapeutic drug used in the treatment of this cancer. We analysed the development of PAC resistance in two ovarian cancer cell lines. Exposure of drug-sensitive cell lines (A2780 and W1) to PAC was used to determine the primary response. An established response was determined in PAC-resistant sublines of the A2780 and W1 cell lines. qRT-PCR was performed to measure the expression levels of specific genes. We observed decreased expression of the PCDH9, NSBP1, MCTP1 and SEMA3A genes in the PAC-resistant cell lines. Short-term exposure to PAC led to increased expression of the MDR1 and BCRP genes in the A2780 and W1 cell lines. In the A2780 cell line, we also observed increased expression of the C4orf18 gene and decreased expression of the PCDH9 and SEMA3A genes after PAC treatment. In the W1 cell line, short-term treatment with PAC upregulated the expression of the ALDH1A1 gene, a marker of Cancer stem cells (CSCs). Our results suggest that downregulation of the PCDH9, NSBP1, MCTP1 and SEMA3A genes and upregulation of the MDR1, BCRP, C4orf18 and ALDH1A1 genes may be related to PAC resistance. Full article
(This article belongs to the Special Issue Counteracting Drug Resistant Mechanisms in Cancer)
Show Figures

Figure 1

6977 KiB  
Article
A Novel Receptor Tyrosine Kinase Switch Promotes Gastrointestinal Stromal Tumor Drug Resistance
by Sergei Boichuk, Aigul Galembikova, Pavel Dunaev, Elena Valeeva, Elena Shagimardanova, Oleg Gusev and Svetlana Khaiboullina
Molecules 2017, 22(12), 2152; https://doi.org/10.3390/molecules22122152 - 5 Dec 2017
Cited by 37 | Viewed by 5395
Abstract
The fact that most gastrointestinal stromal tumors (GISTs) acquire resistance to imatinib (IM)-based targeted therapy remains the main driving force to identify novel molecular targets that are capable to increase GISTs sensitivity to the current therapeutic regimens. Secondary resistance to IM in GISTs [...] Read more.
The fact that most gastrointestinal stromal tumors (GISTs) acquire resistance to imatinib (IM)-based targeted therapy remains the main driving force to identify novel molecular targets that are capable to increase GISTs sensitivity to the current therapeutic regimens. Secondary resistance to IM in GISTs typically occurs due to several mechanisms that include hemi- or homo-zygous deletion of the wild-type KIT allele, overexpression of focal adhesion kinase (FAK) and insulin-like growth factor receptor I (IGF-1R) amplification, BRAF mutation, a RTK switch (loss of c-KIT and gain of c-MET/AXL), etc. We established and characterized the IM-resistant GIST T-1 cell line (GIST T-1R) lacking secondary c-KIT mutations typical for the IM-resistant phenotype. The resistance to IM in GIST T-1R cells was due to RTK switch (loss of c-KIT/gain of FGFR2α). Indeed, we have found that FGFR inhibition reduced cellular viability, induced apoptosis and affected the growth kinetics of the IM-resistant GISTs in vitro. In contrast, IM-naive GIST T-1 parental cells were not susceptible to FGFR inhibition. Importantly, inhibition of FGF-signaling restored the susceptibility to IM in IM-resistant GISTs. Additionally, IM-resistant GISTs were less susceptible to certain chemotherapeutic agents as compared to parental IM-sensitive GIST cells. The chemoresistance in GIST T-1R cells is not due to overexpression of ABC-related transporter proteins and might be the result of upregulation of DNA damage signaling and repair (DDR) genes involved in DNA double-strand break (DSB) repair pathways (e.g., XRCC3, Rad51, etc.). Taken together, the established GIST T-1R cell subline might be used for in vitro and in vivo studies to examine the efficacy and prospective use of FGFR inhibitors for patients with IM-resistant, un-resectable and metastatic forms of GISTs with the type of RTK switch indicated above. Full article
(This article belongs to the Special Issue Counteracting Drug Resistant Mechanisms in Cancer)
Show Figures

Figure 1

3059 KiB  
Article
New and Old Genes Associated with Primary and Established Responses to Cisplatin and Topotecan Treatment in Ovarian Cancer Cell Lines
by Monika Świerczewska, Andrzej Klejewski, Karolina Wojtowicz, Maciej Brązert, Dariusz Iżycki, Michał Nowicki, Maciej Zabel and Radosław Januchowski
Molecules 2017, 22(10), 1717; https://doi.org/10.3390/molecules22101717 - 13 Oct 2017
Cited by 21 | Viewed by 4437
Abstract
Low efficiency of chemotherapy in ovarian cancer results from the development of drug resistance. Cisplatin (CIS) and topotecan (TOP) are drugs used in chemotherapy of this cancer. We analyzed the development of CIS and TOP resistance in ovarian cancer cell lines. Incubation of [...] Read more.
Low efficiency of chemotherapy in ovarian cancer results from the development of drug resistance. Cisplatin (CIS) and topotecan (TOP) are drugs used in chemotherapy of this cancer. We analyzed the development of CIS and TOP resistance in ovarian cancer cell lines. Incubation of drug sensitive cell lines (W1 and A2780) with cytostatic drugs was used to determine the primary response to CIS and TOP. Quantitative polymerase chain reaction (Q-PCR) was performed to measure the expression levels of the genes. We observed decreased expression of the MCTP1 gene in all resistant cell lines. We observed overexpression of the S100A3 and HERC5 genes in TOP-resistant cell lines. Increased expression of the S100A3 gene was also observed in CIS-resistant A2780 sublines. Overexpression of the C4orf18 gene was observed in CIS- and TOP-resistant A2780 sublines. A short time of exposure to CIS led to increased expression of the ABCC2 gene in the W1 and A2780 cell lines and increased expression of the C4orf18 gene in the A2780 cell line. A short time of exposure to TOP led to increased expression of the S100A3 and HERC5 genes in both sensitive cell lines, increased expression of the C4orf18 gene in the A2780 cell line and downregulation of the MCTP1 gene in the W1 cell line. Our results suggest that changes in expression of the MCTP1, S100A3 and C4orf18 genes may be related to both CIS and TOP resistance. Increased expression of the HERC5 gene seems to be important only in TOP resistance. Full article
(This article belongs to the Special Issue Counteracting Drug Resistant Mechanisms in Cancer)
Show Figures

Figure 1

Review

Jump to: Research

16 pages, 1644 KiB  
Review
Targeting Breast Cancer Stem Cells to Overcome Treatment Resistance
by Sònia Palomeras, Santiago Ruiz-Martínez and Teresa Puig
Molecules 2018, 23(9), 2193; https://doi.org/10.3390/molecules23092193 - 30 Aug 2018
Cited by 128 | Viewed by 13979
Abstract
Despite advances in breast cancer diagnosis and treatment, many patients still fail therapy, resulting in disease progression, recurrence, and reduced overall survival. Historically, much focus has been put on the intrinsic subtyping based in the presence (or absence) of classical immunohistochemistry (IHC) markers [...] Read more.
Despite advances in breast cancer diagnosis and treatment, many patients still fail therapy, resulting in disease progression, recurrence, and reduced overall survival. Historically, much focus has been put on the intrinsic subtyping based in the presence (or absence) of classical immunohistochemistry (IHC) markers such as estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-related protein (HER2). However, it is widely understood that tumors are composed of heterogeneous populations of cells with a hierarchical organization driven by cancer stem cells (CSCs). In breast tumors, this small population of cells displaying stem cell properties is known as breast CSCs (BCSCs). This rare population exhibit a CD44+/CD24−/low phenotype with high ALDH activity (ALDH+), and possesses higher tolerability to chemotherapy, hormone therapy, and radiotherapy and is able to reproduce the bulk of the tumor after reduction of cell populations sensitive to first-line therapy leading to disease relapse. In this review, we present special attention to BCSCs with future directions in the establishment of a therapy targeting this population. Drugs targeting the main BCSCs signaling pathways undergoing clinical trials are also summarized. Full article
(This article belongs to the Special Issue Counteracting Drug Resistant Mechanisms in Cancer)
Show Figures

Figure 1

21 pages, 1079 KiB  
Review
Interplay between P-Glycoprotein Expression and Resistance to Endoplasmic Reticulum Stressors
by Milan Hano, Lenka Tomášová, Mário Šereš, Lucia Pavlíková, Albert Breier and Zdena Sulová
Molecules 2018, 23(2), 337; https://doi.org/10.3390/molecules23020337 - 6 Feb 2018
Cited by 38 | Viewed by 6617
Abstract
Multidrug resistance (MDR) is a phenotype of cancer cells with reduced sensitivity to a wide range of unrelated drugs. P-glycoprotein (P-gp)—a drug efflux pump (ABCB1 member of the ABC transporter gene family)—is frequently observed to be a molecular cause of MDR. The drug-efflux [...] Read more.
Multidrug resistance (MDR) is a phenotype of cancer cells with reduced sensitivity to a wide range of unrelated drugs. P-glycoprotein (P-gp)—a drug efflux pump (ABCB1 member of the ABC transporter gene family)—is frequently observed to be a molecular cause of MDR. The drug-efflux activity of P-gp is considered as the underlying mechanism of drug resistance against P-gp substrates and results in failure of cancer chemotherapy. Several pathological impulses such as shortages of oxygen and glucose supply, alterations of calcium storage mechanisms and/or processes of protein N-glycosylation in the endoplasmic reticulum (ER) leads to ER stress (ERS), characterized by elevation of unfolded protein cell content and activation of the unfolded protein response (UPR). UPR is responsible for modification of protein folding pathways, removal of misfolded proteins by ER associated protein degradation (ERAD) and inhibition of proteosynthesis. However, sustained ERS may result in UPR-mediated cell death. Neoplastic cells could escape from the death pathway induced by ERS by switching UPR into pro survival mechanisms instead of apoptosis. Here, we aimed to present state of the art information about consequences of P-gp expression on mechanisms associated with ERS development and regulation of the ERAD system, particularly focused on advances in ERS-associated therapy of drug resistant malignancies. Full article
(This article belongs to the Special Issue Counteracting Drug Resistant Mechanisms in Cancer)
Show Figures

Figure 1

20 pages, 1263 KiB  
Review
Cell Migration Related to MDR—Another Impediment to Effective Chemotherapy?
by Jakub Kryczka and Joanna Boncela
Molecules 2018, 23(2), 331; https://doi.org/10.3390/molecules23020331 - 5 Feb 2018
Cited by 14 | Viewed by 4502
Abstract
Multidrug resistance, mediated by members of the ATP-binding cassette (ABC) proteins superfamily, has become one of the biggest obstacles in conquering tumour progression. If the chemotherapy outcome is considered successful, when the primary tumour volume is decreased or completely abolished, modulation of ABC [...] Read more.
Multidrug resistance, mediated by members of the ATP-binding cassette (ABC) proteins superfamily, has become one of the biggest obstacles in conquering tumour progression. If the chemotherapy outcome is considered successful, when the primary tumour volume is decreased or completely abolished, modulation of ABC proteins activity is one of the best methods to overcome drug resistance. However, if a positive outcome is represented by no metastasis or, at least, elongation of remission-free time, then the positive effect of ABC proteins inhibition should be compared with the several side effects it causes, which may inflict cancer progression and decrease overall patient health. Clinical trials conducted thus far have shown that the tested ABC modulators add limited or no benefits to cancer patients, as some of them are merely toxic and others induce unwanted drug–drug interactions. Moreover, the inhibition of certain ABC members has been recently indicated as potentially responsible for increased fibroblasts migration. A better understanding of the complex role of ABC proteins in relation to cancer progression may offer novel strategies in cancer therapy. Full article
(This article belongs to the Special Issue Counteracting Drug Resistant Mechanisms in Cancer)
Show Figures

Graphical abstract

22 pages, 845 KiB  
Review
Towards Comprehension of the ABCB1/P-Glycoprotein Role in Chronic Myeloid Leukemia
by Raquel C. Maia, Flavia C. Vasconcelos, Paloma S. Souza and Vivian M. Rumjanek
Molecules 2018, 23(1), 119; https://doi.org/10.3390/molecules23010119 - 7 Jan 2018
Cited by 54 | Viewed by 7219
Abstract
Abstract: The introduction of imatinib (IM), a BCR-ABL1 tyrosine kinase inhibitor (TKI), has represented a significant advance in the first-line treatment of chronic myeloid leukemia (CML). However, approximately 30% of patients need to discontinue IM due to resistance or intolerance to [...] Read more.
Abstract: The introduction of imatinib (IM), a BCR-ABL1 tyrosine kinase inhibitor (TKI), has represented a significant advance in the first-line treatment of chronic myeloid leukemia (CML). However, approximately 30% of patients need to discontinue IM due to resistance or intolerance to this drug. Both resistance and intolerance have also been observed in treatment with the second-generation TKIs—dasatinib, nilotinib, and bosutinib—and the third-generation TKI—ponatinib. The mechanisms of resistance to TKIs may be BCR-ABL1-dependent and/or BCR-ABL1-independent. Although the role of efflux pump P-glycoprotein (Pgp), codified by the ABCB1 gene, is unquestionable in drug resistance of many neoplasms, a longstanding question exists about whether Pgp has a firm implication in TKI resistance in the clinical scenario. The goal of this review is to offer an overview of ABCB1/Pgp expression/activity/polymorphisms in CML. Understanding how interactions, associations, or cooperation between Pgp and other molecules—such as inhibitor apoptosis proteins, microRNAs, or microvesicles—impact IM resistance risk may be critical in evaluating the response to TKIs in CML patients. In addition, new non-TKI compounds may be necessary in order to overcome the resistance mediated by Pgp in CML. Full article
(This article belongs to the Special Issue Counteracting Drug Resistant Mechanisms in Cancer)
Show Figures

Figure 1

1110 KiB  
Review
PP2A as the Main Node of Therapeutic Strategies and Resistance Reversal in Triple-Negative Breast Cancer
by Henan Zhao, Duojiao Li, Baojing Zhang, Yan Qi, Yunpeng Diao, Yuhong Zhen and Xiaohong Shu
Molecules 2017, 22(12), 2277; https://doi.org/10.3390/molecules22122277 - 20 Dec 2017
Cited by 10 | Viewed by 7445
Abstract
Triple negative breast cancer (TNBC), is defined as a type of tumor lacking the expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). The ER, PR and HER2 are usually the molecular therapeutic targets for breast [...] Read more.
Triple negative breast cancer (TNBC), is defined as a type of tumor lacking the expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). The ER, PR and HER2 are usually the molecular therapeutic targets for breast cancers, but they are ineffective for TNBC because of their negative expressions, so chemotherapy is currently the main treatment strategy in TNBC. However, drug resistance remains a major impediment to TNBC chemotherapeutic treatment. Recently, the protein phosphatase 2A (PP2A) has been found to regulate the phosphorylation of some substrates involved in the relevant target of TNBC, such as cell cycle control, DNA damage responses, epidermal growth factor receptor, immune modulation and cell death resistance, which may be the effective therapeutic strategies or influence drug sensitivity to TNBCs. Furthermore, PP2A has also been found that could induce ER re-expression in ER-negative breast cancer cells, and which suggests PP2A could promote the sensitivity of tamoxifen to TNBCs as a resistance reversal agent. In this review, we will summarize the potential therapeutic value of PP2A as the main node in developing targeting agents, disrupting resistance or restoring drug sensitivity in TNBC. Full article
(This article belongs to the Special Issue Counteracting Drug Resistant Mechanisms in Cancer)
Show Figures

Figure 1

Back to TopTop