Lignin for Energy, Chemicals and Materials
A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".
Deadline for manuscript submissions: closed (31 December 2018) | Viewed by 109930
Special Issue Editors
Interests: catalytic conversion of lignocellulosic biomass for fuels; chemicals and materials; catalytic conversion of cellulose, starch or sugars into chemicals and materials; catalytic conversion of glycerol; green chemistry and engineering
Special Issues, Collections and Topics in MDPI journals
Interests: forest biorefinery; lignin recovery; lignin characterization; lignin products; hemicellulose recovery; hemicellulose products; methanol recovery; biomass processing operations; process integration and economics; black and red liquor characterization; chemical recovery; chemical separation and regeneration technologies for kraft, sulphite and BCTMP mills; system closure
Special Issue Information
Dear Colleagues,
Lignin is the second most abundant natural renewable polymer after cellulose. Natural lignin is a phenolic polymer of three monolignols with an amorphous macromolecular structure. Lignin is currently being produced in large quantities as a by-product of chemical pulping and cellulosic ethanol processes. According to the International Lignin Institute, about 40–50 million tonnes of kraft lignin (KL) are generated each year, globally, in the form of “black liquor”. While combustion of black liquor to regenerate pulping chemicals and to produce steam and power is an integral part of the kraft process, a small portion of the lignin can be removed without compromising mill material and energy balances. Meanwhile, the production of ethanol, butanol and platform chemicals (e.g., lactic, succinic and other organic acids) from cellulosic sugars is growing. For this to achieve extensive commercial success on a worldwide basis, value-added applications are needed for the hydrolysis lignin by-products that are generated from lignocellulose hydrolysis processes.
Many studies have been conducted on lignin utilization. Similar to other carbonaceous solid fuels, lignin can be a source for energy and fuels (e.g., combustion/co-combustion of lignin for energy, pyrolysis or hydrothermal liquefaction of lignin for bio-oils/liquid bio-fuels, or gasification of lignin for syngas/hydrogen, etc.). The presence of various functional groups (aromatic ring free positions and hydroxyl groups) on lignin structure, biodegradability, antioxidant, flame retardant and reinforcing capability make it as a potential candidate for the production of bio-aromatic chemicals (e.g., vanillin, phenols and antioxidants), bio-based polymeric materials (e.g., resins and polymers), and carbon fibers for use as reinforcement fillers in thermoplastic polymers, light-weight composite materials, as well as graphene for use in supercapacitors for energy storage. Direct use of lignin for chemical synthesis and materials can be challenging because the molecular weight is too high and because reactivity is reduced due to steric hindrance effects. The reactivity of lignin could be enhanced through some chemical modifications and thermochemical de-polymerization processes.
This Special Issue aims to cover recent progress and trends in the utilization of lignin or modified/de-polymerized lignin in chemical synthesis, materials and energy. Submissions are welcome but not limited to the topics listed below. Types of contributions to this Special Isssue can be full research articles, short communications, and reviews focusing on the utilization of lignin for energy/fuels, chemical and materials.
- Extraction of lignin from pulping processes or cellulosic ethanol processes;
- Chemical modification/de-polymerization of lignin;
- Combustion/co-combustion of lignin for energy;
- Pyrolysis or hydrothermal liquefaction of lignin for bio-oils/liquid bio-fuels;
- Gasification of lignin for syngas/hydrogen;
- Production of bio-aromatic chemicals from lignin (e.g., vanillin, phenols and antioxidants);
- Synthesis of bio-based polymeric materials from lignin (e.g., resins and polymers)
- Production of carbon fibers as reinforcement fillers in thermoplastic polymers or light-weight composite materials
- Production of graphene for use in supercapacitors for energy storage.
Prof. Chunbao (Charles) Xu
Dr. Michael Paleologou
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- Lignin
- Chemical characterization
- Chemical modification
- De-polymerization
- Combustion
- Energy
- Pyrolysis
- Hydrothermal liquefaction
- Bio-oils
- Phenols
- Bio-aromatic chemicals
- Synthesis
- Resins
- Polymers
- Carbon fibers
- Composites
- Graphene
- Supercapacitors
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.
Related Special Issue
- Lignin: From Nature to Advanced Materials in Molecules (13 articles)