Special Issue

Nanomaterials for Photocatalytic Degradation of Pollutant and Hydrogen Evolution

Message from the Guest Editor

Photocatalytic degradation and hydrogen production has been developed over decades and is considered a green and advanced technology in the environmental and energy fields. Now, efficient visible light absorption and the rapid separation of photogenerated electronhole are the main factors to improve their photocatalytic efficiency. Therefore, the generation, transfer, and reaction of the photogenerated carries has become the core content of photocatalytic research. In general, photogenerated electrons and holes can be modulated by controlling composition, morphology, surface defects, surface coordination environment, and composite catalysts. This Special Issue of Nanomaterials aims to delve deeper into the mechanisms and processes of photocatalytic degradation and hydrogen production. This field has developed rapidly in the past 20 years and has attracted the attention of a large number of researchers. The relation between the surface properties of photocatalysts and their catalytic performance is of particular interest.

Guest Editor

Dr. Jing Feng

Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, China

Deadline for manuscript submissions

20 January 2025

Nanomaterials

an Open Access Journal by MDPI

Impact Factor 4.4
CiteScore 8.5
Indexed in PubMed

mdpi.com/si/178680

Nanomaterials
MDPI, Grosspeteranlage 5
4052 Basel, Switzerland
Tel: +41 61 683 77 34
nanomaterials@mdpi.com

mdpi.com/journal/ nanomaterials

Nanomaterials

an Open Access Journal by MDPI

Impact Factor 4.4 CiteScore 8.5 Indexed in PubMed

About the Journal

Message from the Editor-in-Chief

Nanoscience and nanotechnology are exciting fields of research and development, with wide applications to electronic, optical, and magnetic devices, biology, medicine, energy, and defense. At the heart of these fields are the synthesis, characterization, modeling, and applications of new materials with lower nanometerscale dimensions, which we call "nanomaterials". These materials can exhibit unusual mesoscopic properties and include nanoparticles, coatings and thin films, metal-organic frameworks, membranes, nano-alloys, quantum dots, self-assemblies, 2D materials such as graphene, and nanotubes. Our journal, Nanomaterials, has the goal of publishing the highest quality papers on all aspects of nanomaterial science to an interdisciplinary scientific audience. All of our articles are published with rigorous refereeing and open access.

Editor-in-Chief

Prof. Dr. Shirley Chiang
Department of Physics, University of California Davis, One Shields
Avenue, Davis, CA 95616-5270, USA

Author Benefits

Open Access:

free for readers, with article processing charges (APC) paid by authors or their institutions.

High Visibility:

indexed within Scopus, SCIE (Web of Science), PubMed, PMC, CAPlus / SciFinder, Inspec, and other databases.

Journal Rank:

JCR - Q2 (Chemistry, Multidisciplinary) / CiteScore - Q1 (General Chemical Engineering)

