Optical Spectroscopy Characterizations of Low-Dimensional Nanomaterials

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Synthesis, Interfaces and Nanostructures".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 4110

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
Interests: low-dimensional nanomaterials; optical anisotropy; spectroscopic characterization; heterostructures

E-Mail Website
Guest Editor
State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Interests: optical metrology; ellipsometry and polarimetry; ultra-thin films; low-dimensional materials

Special Issue Information

Dear Colleagues,

Optical spectroscopy enables the precise measurement of materials at atomic, molecular, and macromolecular scales, which is a pivotal tool that aids in understanding, manufacturing, and controlling matter engineering of low-dimensional materials, heterostructures, and nanosystems. In particular, with the ultimate pursuit of decreased thickness approaching single atomic layer levels, low-dimensional materials can exhibit novel or distinct properties compared with their counterpart bulk materials, which could be revealed with the help of optical spectroscopy methods, including linear, non-linear, and photoelectron spectroscopy methods. Besides, due to their inherently small size, accurately characterizing the fundamental physical and chemical properties of low-dimensional materials is still challenging, and novel approaches promoting sensitivity, resolution, speed, model fitting, etc., are highly desired.   

This Special Issue focuses on the current state-of-the-art in characterizing low-dimensional materials via optical spectroscopy and the advanced development of optical spectroscopy instrumentations applied for unique application scenarios, such as in situ growth monitoring, manipulating and defect engineering, etc. It aims to attract both academic and industrial researchers in order to foster the current knowledge of low-dimensional materials and applications, and to present new ideas for characterizing technologies.

We look forward to receiving your contributions.

Dr. Wanfu Shen
Dr. Honggang Gu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • low-dimensional materials
  • optical spectroscopy
  • optical spectroscopy instrumentations
  • in situ monitoring
  • low-symmetrical materials
  • heterostructures
  • defect engineering

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

10 pages, 5611 KiB  
Article
Investigation of the Influence of Structure, Stoichiometry, and Synthesis Temperature on the Optical Properties of CdTe Nanoplatelets
by Aigerim Ospanova, Yerkebulan Koshkinbayev, Asset Kainarbay, Temirulan Alibay, Rakhima Daurenbekova, Aizhan Akhmetova, Alexander Vinokurov, Sergei Bubenov, Sergey Dorofeev and Dulat Daurenbekov
Nanomaterials 2024, 14(22), 1814; https://doi.org/10.3390/nano14221814 - 13 Nov 2024
Viewed by 534
Abstract
Colloidal cadmium telluride (CdTe) nanoplatelets (NPLs) are promising materials for optoelectronic applications, such as photovoltaics and light-emitting diodes, due to their unique optical and electronic properties. However, controlling their growth, thickness, and stoichiometry remains challenging. This study explores the effect of synthesis temperature [...] Read more.
Colloidal cadmium telluride (CdTe) nanoplatelets (NPLs) are promising materials for optoelectronic applications, such as photovoltaics and light-emitting diodes, due to their unique optical and electronic properties. However, controlling their growth, thickness, and stoichiometry remains challenging. This study explores the effect of synthesis temperature on the structural, optical, and stoichiometric properties of CdTe NPLs. CdTe NPLs were synthesized at temperatures of 170 °C, 180 °C, 190 °C, and 200 °C using colloidal methods. The resulting NPLs were characterized by UV–Vis absorption spectroscopy, photoluminescence (PL) spectroscopy, transmission electron microscopy (TEM), and total reflection X-ray fluorescence (TXRF) to assess their morphology, structure, and elemental composition. The results showed that the synthesis temperature significantly affected the NPL’s morphology and stoichiometry. Optimal stoichiometry was achieved at 180 °C and 190 °C, with the crystal structure transitioning from zinc blende at lower temperatures to wurtzite at higher temperatures. Optical properties, including luminescence intensity and emission peaks, also varied with temperature. The synthesis temperature is an important parameter in controlling the structural and optical properties of CdTe NPLs. The optimal conditions for obtaining NPLs with the best characteristics were identified at 190 °C, presenting important findings for further optimization of CdTe NPL synthesis for optoelectronic applications. Full article
Show Figures

Figure 1

10 pages, 3269 KiB  
Article
The Influence of Temperature and Stoichiometry on the Optical Properties of CdSe Nanoplatelets
by Yerkebulan Koshkinbayev, Aigerim Ospanova, Aizhan Akhmetova, Turlybek Nurakhmetov, Asset Kainarbay, Keleshek Zhangylyssov, Sergey Dorofeev, Alexander Vinokurov, Sergei Bubenov and Dulat Daurenbekov
Nanomaterials 2024, 14(22), 1794; https://doi.org/10.3390/nano14221794 - 8 Nov 2024
Viewed by 590
Abstract
Colloidal quasi-two-dimensional cadmium chalcogenide nanoplatelets have attracted considerable interest due to their narrow excitonic emission and absorption bands, making them promising candidates for advanced optical applications. In this study, the synthesis of quasi-two-dimensional CdSe NPLs with a thickness of 3.5 monolayers was investigated [...] Read more.
Colloidal quasi-two-dimensional cadmium chalcogenide nanoplatelets have attracted considerable interest due to their narrow excitonic emission and absorption bands, making them promising candidates for advanced optical applications. In this study, the synthesis of quasi-two-dimensional CdSe NPLs with a thickness of 3.5 monolayers was investigated to understand the effects of synthesis temperature on their stoichiometry, morphology, and optical properties. The NPLs were synthesized using a colloidal method with temperatures ranging from 170 °C to 210 °C and optimized precursor ratios. Total reflection X-ray fluorescence (TXRF) analysis was employed to determine stoichiometry, while high-resolution transmission electron microscopy (HRTEM) and UV-Vis spectroscopy and photoluminescence spectroscopy were used to analyze the structural and optical characteristics. The results showed a strong correlation between increasing synthesis temperature and the enlargement of nanoscroll diameters, indicating dynamic growth. The best results in terms of uniformity, stoichiometry, and optical properties were achieved at a growth temperature of 200 °C. At this temperature, no additional optical bands associated with secondary populations or hetero-confinement were observed, indicating the high purity of the sample. Samples synthesized at lower temperatures exhibited deviations in stoichiometry and optical performance, suggesting the presence of residual organic compounds. Full article
Show Figures

Figure 1

11 pages, 13353 KiB  
Article
In Situ Studies on the Influence of Surface Symmetry on the Growth of MoSe2 Monolayer on Sapphire Using Reflectance Anisotropy Spectroscopy and Differential Reflectance Spectroscopy
by Yufeng Huang, Mengjiao Li, Zhixin Hu, Chunguang Hu, Wanfu Shen, Yanning Li and Lidong Sun
Nanomaterials 2024, 14(17), 1457; https://doi.org/10.3390/nano14171457 - 7 Sep 2024
Viewed by 797
Abstract
The surface symmetry of the substrate plays an important role in the epitaxial high-quality growth of 2D materials; however, in-depth and in situ studies on these materials during growth are still limited due to the lack of effective in situ monitoring approaches. In [...] Read more.
The surface symmetry of the substrate plays an important role in the epitaxial high-quality growth of 2D materials; however, in-depth and in situ studies on these materials during growth are still limited due to the lack of effective in situ monitoring approaches. In this work, taking the growth of MoSe2 as an example, the distinct growth processes on Al2O3 (112¯0) and Al2O3 (0001) are revealed by parallel monitoring using in situ reflectance anisotropy spectroscopy (RAS) and differential reflectance spectroscopy (DRS), respectively, highlighting the dominant role of the surface symmetry. In our previous study, we found that the RAS signal of MoSe2 grown on Al2O3 (112¯0) initially increased and decreased ultimately to the magnitude of bare Al2O3 (112¯0) when the first layer of MoSe2 was fully merged, which is herein verified by the complementary DRS measurement that is directly related to the film coverage. Consequently, the changing rate of reflectance anisotropy (RA) intensity at 2.5 eV is well matched with the dynamic changes in differential reflectance (DR) intensity. Moreover, the surface-dominated uniform orientation of MoSe2 islands at various stages determined by RAS was further investigated by low-energy electron diffraction (LEED) and atomic force microscopy (AFM). By contrast, the RAS signal of MoSe2 grown on Al2O3 (0001) remains at zero during the whole growth, implying that the discontinuous MoSe2 islands have no preferential orientations. This work demonstrates that the combination of in situ RAS and DRS can provide valuable insights into the growth of unidirectional aligned islands and help optimize the fabrication process for single-crystal transition metal dichalcogenide (TMDC) monolayers. Full article
Show Figures

Figure 1

12 pages, 2635 KiB  
Article
Quantitatively Exploring Giant Optical Anisotropy of Quasi-One-Dimensional Ta2NiS5
by Qihang Zhang, Honggang Gu, Zhengfeng Guo, Ke Ding and Shiyuan Liu
Nanomaterials 2023, 13(24), 3098; https://doi.org/10.3390/nano13243098 - 7 Dec 2023
Cited by 3 | Viewed by 1623
Abstract
Optical anisotropy offers a heightened degree of flexibility in shaping optical properties and designing cutting-edge devices. Quasi-one-dimensional Ta2NiS5, with giant optical anisotropy, has been used in the development of new lasers and sensors. In this research endeavor, we successfully [...] Read more.
Optical anisotropy offers a heightened degree of flexibility in shaping optical properties and designing cutting-edge devices. Quasi-one-dimensional Ta2NiS5, with giant optical anisotropy, has been used in the development of new lasers and sensors. In this research endeavor, we successfully acquired the complete dielectric tensor of Ta2NiS5, utilizing the advanced technique of Mueller matrix spectroscopic ellipsometry, enabling a rigorous quantitative assessment of its optical anisotropy. The results indicate that Ta2NiS5 demonstrates giant birefringence and dichroism, with Δnmax = 1.54 and Δkmax = 1.80. This pursuit also delves into the fundamental underpinnings of this optical anisotropy, drawing upon a fusion of first-principles calculations and critical points analysis. The anisotropy of Ta2NiS5 arises from differences in optical transitions in different directions and is shown to be due to van Hove singularities without exciton effects. Its giant optical anisotropy is expected to be useful in the design of novel optical devices, and the revelation of the physical mechanism facilitates the modulation of its optical properties. Full article
Show Figures

Figure 1

Back to TopTop