Plant-Based Extracts and the Therapeutic Potential of Bioactive Compounds

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Natural Products".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 13500

Special Issue Editor


E-Mail Website
Guest Editor
Department of Pharmacognosy with the Medicinal Plant Garden, Faculty of Pharmacy, Medical University of Lublin, Collegium Universum, 1 Chodźki Street, 20-093 Lublin, Poland
Interests: phytochemistry; phytotherapy; phytochemical analysis; the biological and pharmacological effects of phytoconstituents
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The safety, efficacy, and quality of modern herbal medicinal products are determined by valuable plant extracts used in their production. This requires the quality of herbal substances to be consistent and the multi-stage process (which involves obtaining the maximum compliance of the chemical composition with that found in the plant material during the herbal preparation stage) to be standardized. Specific physicochemical high-quality tests are carried out on the final herbal extract, including the control of biologically active components or active chemical markers and the validation of developed analytical methods. Ultimately, this leads to valuable extracts that can be subjected to preclinical and clinical studies due to their therapeutic properties. The Special Issue showcases submissions that present a variety of preparative methods used to obtain liquid and solid herbal extracts and their phytochemical standardization procedure using validated analytical methods.

We encourage article submissions that present coupled chromatographic, spectroscopic, and spectrometric analytical techniques. Detailed phytochemical profiling should be combined with an evaluation of biological properties (in vitro and in vivo studies or preliminary clinical evaluation) of herbal preparations and isolated bioactive phytoconstituents, especially in terms of their ability to inhibit degenerative processes in the human body.

Dr. Grażyna Zgórka
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant extracts
  • herbal medicinal products
  • standardization
  • phytochemical profiling
  • bioactive plant compounds
  • therapeutic effects

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

24 pages, 3419 KiB  
Article
Insights into Clematis cirrhosa L. Ethanol Extract: Cytotoxic Effects, LC-ESI-QTOF-MS/MS Chemical Profiling, Molecular Docking, and Acute Toxicity Study
by Manal I. Alruwad, Riham Salah El Dine, Abdallah M. Gendy, Abdulrahman M. Saleh, Mohamed A. Khalaf, Hala M. El Hefnawy and Manal M. Sabry
Pharmaceuticals 2024, 17(10), 1347; https://doi.org/10.3390/ph17101347 - 9 Oct 2024
Viewed by 833
Abstract
Background: In Jordanian traditional medicine, Clematis cirrhosa is commonly employed for the management of different diseases. Numerous investigations have documented the cytotoxic properties of different Clematis species against numerous types of cancer. Previously, we demonstrated the potential cytotoxicity of Clematis cirrhosa against HT-29 [...] Read more.
Background: In Jordanian traditional medicine, Clematis cirrhosa is commonly employed for the management of different diseases. Numerous investigations have documented the cytotoxic properties of different Clematis species against numerous types of cancer. Previously, we demonstrated the potential cytotoxicity of Clematis cirrhosa against HT-29 colorectal cancer cells. Extending our work, the current research aimed to explore the possible mechanisms underlying its antiproliferative activity with a plant safety evaluation. Methods: This study evaluates the extract’s impact on the cell cycle, apoptosis, and cell migration through in vitro assays, LC-ESI-QTOF-MS/MS analysis, docking studies, and an acute toxicity evaluation. Results: The Clematis cirrhosa ethanol extract (CEE) induced G2/M phase cell cycle arrest (19.63%), triggered significant apoptosis (41.99%), and inhibited cell migration/wound healing by 28.15%. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis revealed increased expression of the proapoptotic markers BAX (6.03-fold) and caspase-3 (6.59-fold), along with the reduced expression of the antiapoptotic BCL-2, in CEE-treated cells. Moreover, CEE significantly restrained angiogenesis by reducing VEGF mRNA expression by 63.9%. High-resolution LC-ESI-QTOF-MS/MS studies identified 26 metabolites, including phenolic compounds, fatty acids, and triterpenoids. Docking studies suggested that manghaslin had the highest binding affinity for VEGFR-2, followed by calceolarioside B, quercetin 7-O-rhamnopyranoside, luteolin, and quercetin-3,7-O-diglucoside. On the other hand, salvadoraside exhibited the highest binding affinity for the inhibition of caspase-3, followed by quercetin-3,7-O-diglucoside, kaempferol-3,7-O-α-L-dirhamnoside, manghaslin, and tectoridin, supporting the observed apoptotic effects. Interestingly, the outcomes further indicate that a single oral administration of up to 5000 mg/kg CEE is safe for consumption. Conclusions: These outcomes point to the potential of Clematis cirrhosa as a promising candidate for further exploration in cancer therapy. Full article
Show Figures

Graphical abstract

19 pages, 2925 KiB  
Article
Genotoxic and Anti-Genotoxic Potential of Hydrosols from Water–Steam Distillation of Oil-Bearing Roses Rosa centifolia L. and Rosa gallica L. from Bulgaria
by Svetla Gateva, Gabriele Jovtchev, Tsveta Angelova, Tsvetelina Gerasimova, Ana Dobreva and Milka Mileva
Pharmaceuticals 2024, 17(5), 657; https://doi.org/10.3390/ph17050657 - 20 May 2024
Cited by 1 | Viewed by 1364
Abstract
Rosa centifolia L. and Rosa gallica L. (Rosaceae) are grown as raw materials for valuable essential oils and hydrosols. There are scarce data about the biological activities and the genoprotective potential of the hydrosols of these roses. The aim of the study was [...] Read more.
Rosa centifolia L. and Rosa gallica L. (Rosaceae) are grown as raw materials for valuable essential oils and hydrosols. There are scarce data about the biological activities and the genoprotective potential of the hydrosols of these roses. The aim of the study was to provide information on their cytotoxic/genotoxic activity and anti-cytotoxic/anti-genotoxic capacity against mutagenic N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). The evaluation was performed using classical tests for chromosomal aberrations and micronuclei in the higher plant Hordeum vulgare and human lymphocyte test systems. The experimental schemes included combined hydrosol and mutagen treatment. Both hydrosols (6, 14, 20%) had no cytotoxic effect on barley and showed low genotoxicity in both test systems as the injuries were enhanced to a lesser extent compared to the controls. Lymphocytes were more susceptible than H. vulgare. Under the conditions of combined treatment, it was found that the two hydrosols possessed good anti-cytotoxic and anti-genotoxic potential against MNNG. Both rose products exerted genoprotective potential to a similar extent, decreasing the frequencies of aberrations in chromosomes and micronuclei to a significant degree in both types of cells when non-toxic concentrations of hydrosols were applied before MNNG. This was performed both with and without any inter-treatment time. The observed cytoprotective/genoprotective potential suggests that these hydrosols are promising for further application in phytotherapy and medicine. Full article
Show Figures

Figure 1

20 pages, 9362 KiB  
Article
The Therapeutic Potential of Four Main Compounds of Zanthoxylum nitidum (Roxb.) DC: A Comprehensive Study on Biological Processes, Anti-Inflammatory Effects, and Myocardial Toxicity
by Xiaohan Li, Qi Wang, Ling Liu, Yang Shi, Yang Hong, Wanqing Xu, Henghui Xu, Jing Feng, Minzhen Xie, Yang Li, Baofeng Yang and Yong Zhang
Pharmaceuticals 2024, 17(4), 524; https://doi.org/10.3390/ph17040524 - 19 Apr 2024
Cited by 1 | Viewed by 3731
Abstract
Zanthoxylum nitidum (Roxb.) DC. (Z. nitidum) is a traditional Chinese medicinal plant that is indigenous to the southern regions of China. Previous research has provided evidence of the significant anti-inflammatory, antibacterial, and anticancer properties exhibited by Z. nitidum. The potential [...] Read more.
Zanthoxylum nitidum (Roxb.) DC. (Z. nitidum) is a traditional Chinese medicinal plant that is indigenous to the southern regions of China. Previous research has provided evidence of the significant anti-inflammatory, antibacterial, and anticancer properties exhibited by Z. nitidum. The potential therapeutic effects and cardiac toxicity of Z. nitidum remain uncertain. The aim of this research was to investigate the potential therapeutic properties of the four main compounds of Z. nitidum in cardiovascular diseases, their impact on the electrical activity of cardiomyocytes, and the underlying mechanism of their anti-inflammatory effects. We selected the four compounds from Z. nitidum with a high concentration and specific biological activity: nitidine chloride (NC), chelerythrine chloride (CHE), magnoflorine chloride (MAG), and hesperidin (HE). A proteomic analysis was conducted on the myocardial tissues of beagle dogs following the administration of NC to investigate the role of NC in vivo and the associated biological processes. A bioinformatic analysis was used to predict the in vivo biological processes that MAG, CHE, and HE were involved in. Molecular docking was used to simulate the binding between compounds and their targets. The effect of the compounds on ion channels in cardiomyocytes was evaluated through a patch clamp experiment. Organ-on-a-chip (OOC) technology was developed to mimic the physiological conditions of the heart in vivo. Proteomic and bioinformatic analyses demonstrated that the four compounds of Z. nitidum are extensively involved in various cardiovascular-related biological pathways. The findings from the patch clamp experiments indicate that NC, CHE, MAG, and HE elicit a distinct activation or inhibition of the IK1 and ICa-L in cardiomyocytes. Finally, the anti-inflammatory effects of the compounds on cardiomyocytes were verified using OOC technology. NC, CHE, MAG, and HE demonstrate anti-inflammatory effects through their specific interactions with prostaglandin-endoperoxide synthase 2 (PTGS2) and significantly influence ion channels in cardiomyocytes. Our study provides a foundation for utilizing NC, CHE, MAG, and HE in the treatment of cardiovascular diseases. Full article
Show Figures

Figure 1

19 pages, 6916 KiB  
Article
Chrysin Inhibits TAMs-Mediated Autophagy Activation via CDK1/ULK1 Pathway and Reverses TAMs-Mediated Growth-Promoting Effects in Non-Small Cell Lung Cancer
by Xinglinzi Tang, Xiaoru Luo, Xiao Wang, Yi Zhang, Jiajia Xie, Xuan Niu, Xiaopeng Lu, Xi Deng, Zheng Xu and Fanwei Wu
Pharmaceuticals 2024, 17(4), 515; https://doi.org/10.3390/ph17040515 - 17 Apr 2024
Cited by 1 | Viewed by 1490
Abstract
The natural flavonoid compound chrysin has promising anti-tumor effects. In this study, we aimed to investigate the mechanism by which chrysin inhibits the growth of non-small cell lung cancer (NSCLC). Through in vitro cell culture and animal models, we explored the impact of [...] Read more.
The natural flavonoid compound chrysin has promising anti-tumor effects. In this study, we aimed to investigate the mechanism by which chrysin inhibits the growth of non-small cell lung cancer (NSCLC). Through in vitro cell culture and animal models, we explored the impact of chrysin on the growth of NSCLC cells and the pro-cancer effects of tumor-associated macrophages (TAMs) and their mechanisms. We observed that M2-TAMs significantly promoted the growth and migration of NSCLC cells, while also markedly activating the autophagy level of these cells. Chrysin displayed a significant inhibitory effect on the growth of NSCLC cells, and it could also suppress the pro-cancer effects of M2-TAMs and inhibit their mediated autophagy. Furthermore, combining network pharmacology, we found that chrysin inhibited TAMs-mediated autophagy activation in NSCLC cells through the regulation of the CDK1/ULK1 signaling pathway, rather than the classical mTOR/ULK1 signaling pathway. Our study reveals a novel mechanism by which chrysin inhibits TAMs-mediated autophagy activation in NSCLC cells through the regulation of the CDK1/ULK1 pathway, thereby suppressing NSCLC growth. This discovery not only provides new therapeutic strategies for NSCLC but also opens up new avenues for further research on chrysin. Full article
Show Figures

Graphical abstract

20 pages, 3189 KiB  
Article
Exploring the Therapeutic Potential of Ammodaucus leucotrichus Seed Extracts: A Multi-Faceted Analysis of Phytochemical Composition, Anti-Inflammatory Efficacy, Predictive Anti-Arthritic Properties, and Molecular Docking Insights
by Cheima Djehiche, Nadia Benzidane, Hanene Djeghim, Mehdi Tebboub, El Hassen Mokrani, Saad Mebrek, Mohammed Messaoudi, Chawki Bensouici, Ali Alsalme, David Cornu, Mikhael Bechelany, Lekhmici Arrar and Ahmed Barhoum
Pharmaceuticals 2024, 17(3), 385; https://doi.org/10.3390/ph17030385 - 18 Mar 2024
Cited by 3 | Viewed by 2234
Abstract
Ammodaucus leucotrichus exhibits promising pharmacological activity, hinting at anti-inflammatory and anti-arthritic effects. This study investigated seed extracts from Ammodaucus leucotrichus using methanol and n-hexane, focusing on anti-inflammatory and anti-arthritic properties. The methanol extract outperformed the n-hexane extract and diclofenac, a reference anti-inflammatory drug, [...] Read more.
Ammodaucus leucotrichus exhibits promising pharmacological activity, hinting at anti-inflammatory and anti-arthritic effects. This study investigated seed extracts from Ammodaucus leucotrichus using methanol and n-hexane, focusing on anti-inflammatory and anti-arthritic properties. The methanol extract outperformed the n-hexane extract and diclofenac, a reference anti-inflammatory drug, in trypsin inhibition (85% vs. 30% and 64.67% at 125 μg/mL). For trypsin inhibition, the IC50 values were 82.97 μg/mL (methanol), 202.70 μg/mL (n-hexane), and 97.04 μg/mL (diclofenac). Additionally, the n-hexane extract surpassed the methanol extract and diclofenac in BSA (bovine serum albumin) denaturation inhibition (90.4% vs. 22.0% and 51.4% at 62.5 μg/mL). The BSA denaturation IC50 values were 14.30 μg/mL (n-hexane), 5408 μg/mL (methanol), and 42.30 μg/mL (diclofenac). Gas chromatography–mass spectrometry (GC–MS) revealed 59 and 58 secondary metabolites in the methanol and n-hexane extracts, respectively. The higher therapeutic activity of the methanol extract was attributed to hydroxyacetic acid hydrazide, absent in the n-hexane extract. In silico docking studies identified 28 compounds with negative binding energies, indicating potential trypsin inhibition. The 2-hydroxyacetohydrazide displayed superior inhibitory effects compared to diclofenac. Further mechanistic studies are crucial to validate 2-hydroxyacetohydrazide as a potential drug candidate for rheumatoid arthritis treatment. Full article
Show Figures

Figure 1

Review

Jump to: Research

27 pages, 1753 KiB  
Review
Prospecting Pharmacologically Active Biocompounds from the Amazon Rainforest: In Vitro Approaches, Mechanisms of Action Based on Chemical Structure, and Perspectives on Human Therapeutic Use
by Andryo O. de Almada-Vilhena, Oscar V. M. dos Santos, Milla de A. Machado, Cleusa Y. Nagamachi and Julio C. Pieczarka
Pharmaceuticals 2024, 17(11), 1449; https://doi.org/10.3390/ph17111449 - 30 Oct 2024
Viewed by 634
Abstract
The Amazon rainforest is an important reservoir of biodiversity, offering vast potential for the discovery of new bioactive compounds from plants. In vitro studies allow for the investigation of biological processes and interventions in a controlled manner, making them fundamental for pharmacological and [...] Read more.
The Amazon rainforest is an important reservoir of biodiversity, offering vast potential for the discovery of new bioactive compounds from plants. In vitro studies allow for the investigation of biological processes and interventions in a controlled manner, making them fundamental for pharmacological and biotechnological research. These approaches are faster and less costly than in vivo studies, providing standardized conditions that enhance the reproducibility and precision of data. However, in vitro methods have limitations, including the inability to fully replicate the complexity of a living organism and the absence of a complete physiological context. Translating results to in vivo models is not always straightforward, due to differences in pharmacokinetics and biological interactions. In this context, the aim of this literature review is to assess the advantages and disadvantages of in vitro approaches in the search for new drugs from the Amazon, identifying the challenges and limitations associated with these methods and comparing them with in vivo testing. Thus, bioprospecting in the Amazon involves evaluating plant extracts through bioassays to investigate pharmacological, antimicrobial, and anticancer activities. Phenolic compounds and terpenes are frequently identified as the main bioactive agents, exhibiting antioxidant, anti-inflammatory, and antineoplastic activities. Chemical characterization, molecular modifications, and the development of delivery systems, such as nanoparticles, are highlighted to improve therapeutic efficacy. Therefore, the Amazon rainforest offers great potential for the discovery of new drugs; however, significant challenges, such as the standardization of extraction methods and the need for in vivo studies and clinical trials, must be overcome for these compounds to become viable medications. Full article
Show Figures

Graphical abstract

33 pages, 3449 KiB  
Review
Immunomodulation of Macrophages in Diabetic Wound Individuals by Structurally Diverse Bioactive Phytochemicals
by Krishnendu Adhikary, Riya Sarkar, Sriparna Maity, Ishani Sadhukhan, Riya Sarkar, Krishnendu Ganguly, Saurav Barman, Rajkumar Maiti, Sanjoy Chakraborty, Tandra R. Chakraborty, Debasis Bagchi and Pradipta Banerjee
Pharmaceuticals 2024, 17(10), 1294; https://doi.org/10.3390/ph17101294 - 28 Sep 2024
Viewed by 2093
Abstract
Diabetes-related ulcers and slow-healing wounds pose a significant health risk to individuals due to their uncertain causes. Mortality rates for diabetes foot ulcers (DFUs) range from 10% after 16 months to 24% after five years. The use of bioactive phytochemicals can play a [...] Read more.
Diabetes-related ulcers and slow-healing wounds pose a significant health risk to individuals due to their uncertain causes. Mortality rates for diabetes foot ulcers (DFUs) range from 10% after 16 months to 24% after five years. The use of bioactive phytochemicals can play a key role in healing wounds in a predictable time. Recent literature has demonstrated that various natural substances, including flavonoids, saponins, phenolic compounds, and polysaccharides, play key roles at different stages of the wound-healing process through diverse mechanisms. These studies have categorized the compounds according to their characteristics, bioactivities, and modes of action. In this study, we evaluated the role of natural compounds derived from plant sources that have been shown to play a crucial role in immunomodulation. Macrophages are closely involved in immunomodulation within the wound microenvironment and are key players in efferocytosis, inflammation resolution, and tissue regeneration, all of which contribute to successful wound healing. Phytochemicals and their derivatives have shown capabilities in immune regulation, including macrophage migration, nitric oxide synthase inhibition, lymphocyte and T-cell stimulation, cytokine activation, natural killer cell enhancement, and the regulation of NF-κβ, TNF-α, and apoptosis. In this review, we have studied the role of phytochemicals in immunomodulation for the resolution of diabetic wound inflammation. Full article
Show Figures

Figure 1

Back to TopTop