Ophthalmic Drug Delivery, 3rd Edition

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Delivery and Controlled Release".

Deadline for manuscript submissions: 10 March 2025 | Viewed by 7376

Special Issue Editors


E-Mail Website
Guest Editor
Department of Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
Interests: ocular drug delivery
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
Interests: ocular drug delivery; ocular pharmacokinetic; drug development; pharmacogenetics; clinical and translational research
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Research in ophthalmic drug delivery has developed significant advances in the last years, and efforts have been made to develop more effective topical formulations to increase drug bioavailability, efficiency, and safety. Drug delivery to the posterior segment of the eye remains a great challenge in the pharmaceutical industry due to the complexity and particularity of the anatomy and physiology of the eye. Some advances have been made with the purpose of maintaining constant drug levels in the site of action. The anatomical ocular barriers have a great impact on drug pharmacokinetics and, subsequently, on the pharmacological effect.

Despite the increasing interest in efficiently reaching the posterior segment of the eye with reduced adverse effects, there is still a need to expand the knowledge of ocular pharmacokinetics that allow the development of safer and more innovative drug delivery systems. These novel approaches may greatly help to improve the lives of patients with ocular pathologies.

In this Special Issue, our goal is to highlight papers describing the advances in ophthalmic drug delivery systems for topical and specialized ocular administration.

Prof. Dr. Francisco Javier Otero-Espinar
Dr. Anxo Fernández Ferreiro
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ocular pharmacokinetics
  • ocular drug delivery systems
  • ocular routs of drug administration
  • intravitreal administration
  • topical administration

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issues

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 3822 KiB  
Article
Enhanced Ocular Drug Delivery of Dexamethasone Using a Chitosan-Coated Soluplus®-Based Mixed Micellar System
by Samer Adwan, Faisal Al-Akayleh, Madeiha Qasmieh and Teiba Obeidi
Pharmaceutics 2024, 16(11), 1390; https://doi.org/10.3390/pharmaceutics16111390 - 29 Oct 2024
Viewed by 785
Abstract
Background: This study introduces a novel dexamethasone (DEX) mixed micellar system (DEX-MM) using Soluplus® and Pluronic F-127 (PF127) to enhance ocular drug delivery. The enhancement of ocular application properties was achieved by creating a chitosan-coated DEX-MM (DEX-CMM), which promotes better adherence to [...] Read more.
Background: This study introduces a novel dexamethasone (DEX) mixed micellar system (DEX-MM) using Soluplus® and Pluronic F-127 (PF127) to enhance ocular drug delivery. The enhancement of ocular application properties was achieved by creating a chitosan-coated DEX-MM (DEX-CMM), which promotes better adherence to the ocular surface, thereby improving drug absorption. Methods: Using the solvent evaporation method, a formulation was developed with a Soluplus®-to-drug ratio of 1:10, enhanced with 0.25% PF127. After dispersing in water, 1% chitosan (CS) was added. The stability and integrity of DEX within the micelles were verified using attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC). Additionally, in vitro and ex vivo drug release studies were conducted. Results: DEX-CMM (F6) demonstrated a particle size of 151.9 ± 1 nm and a polydispersity index (PDI) of 0.168 ± 0.003, suggesting uniformity and high electrostatic stability with a zeta potential of +35.96 ± 2.13 mV. The non-Fickian drug release mechanism indicated prolonged drug retention. Comparative analyses showed DEX-CMM outperforming a standard DEX suspension in drug release and ocular tissue permeation, with flux measurements significantly higher than the DEX suspension. Conclusion: The study confirmed the efficacy of DEX-CMM in enhancing drug delivery to ocular tissues, evidenced by improved permeability. Safety evaluations using the HET-CAM test demonstrated that DEX-CMM was non-irritant, supporting its potential for effective ocular drug delivery. Full article
(This article belongs to the Special Issue Ophthalmic Drug Delivery, 3rd Edition)
Show Figures

Graphical abstract

15 pages, 6029 KiB  
Article
Cysteamine Eye Drops in Hyaluronic Acid Packaged in Innovative Single-Dose Systems, Part II: Long-Term Stability and Clinical Ocular Biopermanence
by Ana Castro-Balado, Andrea Cuartero-Martínez, Hugo Pena-Verdeal, Gonzalo Hermelo-Vidal, Anja Schmidt, Belén Montero, Manuela Hernández-Blanco, Irene Zarra-Ferro, Miguel González-Barcia, Cristina Mondelo-García, María Jesús Giráldez, Eva Yebra-Pimentel, Francisco J. Otero-Espinar and Anxo Fernández-Ferreiro
Pharmaceutics 2023, 15(11), 2589; https://doi.org/10.3390/pharmaceutics15112589 - 5 Nov 2023
Cited by 1 | Viewed by 1677
Abstract
Background: Cystinosis is a rare genetic disorder characterized by the accumulation of cystine crystals in several tissues and organs causing, among others, severe eye symptoms. The high instability of cysteamine eye drops makes it difficult to develop formulations with an acceptable shelf life [...] Read more.
Background: Cystinosis is a rare genetic disorder characterized by the accumulation of cystine crystals in several tissues and organs causing, among others, severe eye symptoms. The high instability of cysteamine eye drops makes it difficult to develop formulations with an acceptable shelf life to be prepared in hospital pharmacy departments. Previously, a new compounded formulation of cysteamine eye drops in hyaluronic acid (HA) packaged in innovative single-dose systems was developed. Methods: Long-term stability at −20 °C of this formulation was studied considering the content of cysteamine, pH, osmolality, viscosity, and microbiological analysis. The oxygen permeability of single-dose containers was also studied and an ocular biopermanence study was conducted in healthy volunteers measuring lacrimal stability and volume parameters. Results: Data confirm that cysteamine concentration remained above 90% for 120 days, all parameters remaining within the accepted range for ophthalmic formulations. The permeability of the containers was reduced over time, while ocular biopermanence was maintained despite the freezing process and storage time. Conclusions: 0.55% cysteamine hydrochloride formulation in HA and packaged in single-dose containers preserved at −20 °C is stable for 120 days protected from light, presenting high potential for its translation into clinical practice when commercial presentations are not available. Full article
(This article belongs to the Special Issue Ophthalmic Drug Delivery, 3rd Edition)
Show Figures

Graphical abstract

13 pages, 10673 KiB  
Article
Ex Vivo Visualization of Distribution of Intravitreal Injections in the Porcine Vitreous and Hydrogels Simulating the Vitreous
by Tobias Auel, Lara Paula Scherke, Stefan Hadlich, Susan Mouchantat, Michael Grimm, Werner Weitschies and Anne Seidlitz
Pharmaceutics 2023, 15(3), 786; https://doi.org/10.3390/pharmaceutics15030786 - 27 Feb 2023
Cited by 4 | Viewed by 1632
Abstract
The characterization of intravitreal dosage forms with regard to their behavior in vivo is usually explored in preclinical development through animal studies. In vitro vitreous substitutes (VS) to simulate the vitreous body for preclinical investigations have so far been insufficiently studied. To determine [...] Read more.
The characterization of intravitreal dosage forms with regard to their behavior in vivo is usually explored in preclinical development through animal studies. In vitro vitreous substitutes (VS) to simulate the vitreous body for preclinical investigations have so far been insufficiently studied. To determine a distribution or concentration in the mostly gel-like VS, extraction of the gels is required in many cases. This destroys the gels, which makes a continuous investigation of the distribution impossible. In this work, the distribution of a contrast agent in hyaluronic acid agar gels and polyacrylamide gels was studied by magnetic resonance imaging and compared with the distribution in ex vivo porcine vitreous. The porcine vitreous served as a surrogate for human vitreous since both are similar in their physicochemical properties. It was shown that both gels do not completely represent the porcine vitreous body, but the distribution in the polyacrylamide gel is similar to that in the porcine vitreous body. In contrast, the distribution throughout the hyaluronic acid agar gel is much faster. It was also shown that anatomical features such as the lens and the interfacial tension to the anterior eye chamber could have an influence on the distribution that is difficult to reproduce using in vitro VS. However, with the presented method, new in vitro VS can be investigated continuously without destruction in the future, and thus their suitability as a substitute for the human vitreous can be verified. Full article
(This article belongs to the Special Issue Ophthalmic Drug Delivery, 3rd Edition)
Show Figures

Figure 1

26 pages, 5357 KiB  
Article
Antifungal Combination Eye Drops for Fungal Keratitis Treatment
by Victoria Díaz-Tomé, Carlos Bendicho-Lavilla, Xurxo García-Otero, Rubén Varela-Fernández, Manuel Martín-Pastor, José Llovo-Taboada, Pilar Alonso-Alonso, Pablo Aguiar, Miguel González-Barcia, Anxo Fernández-Ferreiro and Francisco J. Otero-Espinar
Pharmaceutics 2023, 15(1), 35; https://doi.org/10.3390/pharmaceutics15010035 - 22 Dec 2022
Cited by 5 | Viewed by 2577
Abstract
Fungal keratitis (FK) is a corneal mycotic infection that can lead to vision loss. Furthermore, the severity of FK is aggravated by the emergence of resistant fungal species. There is currently only one FDA-approved formulation for FK treatment forcing hospital pharmacy departments to [...] Read more.
Fungal keratitis (FK) is a corneal mycotic infection that can lead to vision loss. Furthermore, the severity of FK is aggravated by the emergence of resistant fungal species. There is currently only one FDA-approved formulation for FK treatment forcing hospital pharmacy departments to reformulate intravenous drug preparations with unknown ocular bioavailability and toxicity. In the present study, natamycin/voriconazole formulations were developed and characterized to improve natamycin solubility, permanence, and safety. The solubility of natamycin was studied in the presence of two cyclodextrins: HPβCD and HPγCD. The HPβCD was chosen based on the solubility results. Natamycin/cyclodextrin (HPβCD) inclusion complexes characterization and a competition study between natamycin and voriconazole were conducted by NMR (Nuclear Magnetic Resonance). Based on these results, several eye drops with different polymer compositions were developed and subsequently characterized. Permeability studies suggested that the formulations improved the passage of natamycin through the cornea compared to the commercial formulation Natacyn®. The ocular safety of the formulations was determined by BCOP and HET-CAM. The antifungal activity assay demonstrated the ability of our formulations to inhibit the in vitro growth of different fungal species. All these results concluded that the formulations developed in the present study could significantly improve the treatment of FK. Full article
(This article belongs to the Special Issue Ophthalmic Drug Delivery, 3rd Edition)
Show Figures

Graphical abstract

Back to TopTop