Plant Pathology and Epidemiology for Grain, Pulses, and Cereal Crops

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Protection and Biotic Interactions".

Deadline for manuscript submissions: closed (30 June 2024) | Viewed by 14152

Special Issue Editors


E-Mail Website
Guest Editor
Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
Interests: plant pathology; epidemiology; disease monitoring; disease prediction; disease image recognition; smart phytoprotection; climate change
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Plant Protection, College of Plant Sciences, Jilin University, Changchun 130062, China
Interests: plant-pathogen interaction mechanism; molecular biology of plant pathogens; comprehensive green control of plant diseases

Special Issue Information

Dear Colleagues,

Grain, pulses, and cereal crops provide a variety of nutrients for humans around the world. However, they are threatened by various pathogens and diseases, which may not only reduce their yield and quality, but may also affect environmental and social safety. Great progress has been made in the study of these pathogens and diseases, allowing us to deeply understand the relationship between pathogens and hosts, and the epidemic laws of the diseases. The methods for forecasting and controlling these diseases have been updated and optimized to ensure the health of grain, pulses, and cereal crops. With the rapid development of molecular biology methods and modern information technology, significant advances and a series of research results have been achieved in plant pathology and epidemiology for grain, pulses, and cereal crops, especially in pathogenic mechanisms, the disease resistance mechanisms of hosts, pathogen–host/vector–pathogen–host interaction mechanisms, and monitoring and forecasting the pathogens and diseases, providing support for their effective and sustainable control. This Special Issue will collect original papers focusing on the topics in the scope of plant pathology and epidemiology for grain, pulses, and cereal crops, aiming to broaden our understanding of the related pathogens and diseases for their sustainable management.

Dr. Haiguang Wang
Prof. Dr. Jinliang Liu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • grain crop disease
  • pulses crop disease
  • cereal crop disease
  • pathology
  • epidemiology
  • pathogen–host interaction
  • disease control theory
  • disease monitoring
  • disease forecast

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 2311 KiB  
Article
Differences in the Virulence Between Local Populations of Puccinia striiformis f. sp. tritici in Southwest China
by Fang Yang, Yunjing Wang, Zhiying Ji, Jiahui Liu, Mei Zhang, Yunliang Peng, Jie Zhao and Hongli Ji
Plants 2024, 13(20), 2902; https://doi.org/10.3390/plants13202902 - 17 Oct 2024
Viewed by 506
Abstract
The virulence analysis of Puccinia stiiformis f. sp. tritici (Pst), the cause of wheat stripe rust, is essential for predicting and managing the disease epidemic in Southwest China, where the wheat cultivation has significantly reduced in the past few decades due [...] Read more.
The virulence analysis of Puccinia stiiformis f. sp. tritici (Pst), the cause of wheat stripe rust, is essential for predicting and managing the disease epidemic in Southwest China, where the wheat cultivation has significantly reduced in the past few decades due to the impact of this disease. From 2020 to 2021, 196 Pst isolates were collected from Guizhou, Yunnan, and Sichuan. The virulence and race assessments were conducted using Chinese differential genotypes. Additionally, the resistance expression of 102 wheat lines was evaluated in 2021 in two disease nurseries located in Ningnan and Jiangyou. All the 45 Pst isolates from Guizhou and Yunnan belonged to pathogroup Hybrid 46, with 36 identified as race CYR32. Among the 69 isolates from the Liangshan Prefecture, 67 belonged to the Hybrid 46 group, while the remaining two were identified as race CYR34 in the G-22 group. Furthermore, all 79 isolates from the western Sichuan Basin belonged to the G-22 group, with 54 identified as race CYR34. The diversity indices of the Pst populations from Guizhou, Sichuan, and Yunnan exhibited a sequential decline. Virulence variation among the Pst populations from Yunnan, Guizhou, and the Ganzi-Liangshan region was minimal; however, significant virulence differences were observed when these populations were compared to those from the western Sichuan Basin. Results from disease nurseries indicated that Pst virulence was notably stronger in Ningnan compared to that in Jiangyou. The Sichuan Basin exhibits a notable diversity in Pst virulence, coupled with a more frequent genetic exchange occurring between the Liangshan Prefecture and the Yunnan-Guizhou Plateau. This information is essential for developing effective management strategies to mitigate the impact of wheat stripe rust in this region. Full article
(This article belongs to the Special Issue Plant Pathology and Epidemiology for Grain, Pulses, and Cereal Crops)
Show Figures

Figure 1

23 pages, 4476 KiB  
Article
YOLOv5s-Based Image Identification of Stripe Rust and Leaf Rust on Wheat at Different Growth Stages
by Qian Jiang, Hongli Wang, Zhenyu Sun, Shiqin Cao and Haiguang Wang
Plants 2024, 13(20), 2835; https://doi.org/10.3390/plants13202835 - 10 Oct 2024
Viewed by 791
Abstract
Stripe rust caused by Puccinia striiformis f. sp. tritici and leaf rust caused by Puccinia triticina, are two devastating diseases on wheat, which seriously affect the production safety of wheat. Timely detection and identification of the two diseases are essential for taking effective disease [...] Read more.
Stripe rust caused by Puccinia striiformis f. sp. tritici and leaf rust caused by Puccinia triticina, are two devastating diseases on wheat, which seriously affect the production safety of wheat. Timely detection and identification of the two diseases are essential for taking effective disease management measures to reduce wheat yield losses. To realize the accurate identification of wheat stripe rust and wheat leaf rust during the different growth stages, in this study, the image-based identification of wheat stripe rust and wheat leaf rust during different growth stages was investigated based on deep learning using image processing technology. Based on the YOLOv5s model, we built identification models of wheat stripe rust and wheat leaf rust during the seedling stage, stem elongation stage, booting stage, inflorescence emergence stage, anthesis stage, milk development stage, and all the growth stages. The models were tested on the different testing sets in the different individual growth stages and in all the growth stages. The results showed that the models performed differently in disease image identification. The model based on the disease images acquired during an individual growth stage was not suitable for the identification of the disease images acquired during the other individual growth stages, except for the model based on the disease images acquired during the milk development stage, which had acceptable identification performance on the testing sets in the anthesis stage and the milk development stage. In addition, the results demonstrated that wheat growth stages had a great influence on the image identification of the two diseases. The model built based on the disease images acquired in all the growth stages produced acceptable identification results. Mean F1 Score values between 64.06% and 79.98% and mean average precision (mAP) values between 66.55% and 82.80% were achieved on each testing set composed of the disease images acquired during an individual growth stage and on the testing set composed of the disease images acquired during all the growth stages. This study provides a basis for the image-based identification of wheat stripe rust and wheat leaf rust during the different growth stages, and it provides a reference for the accurate identification of other plant diseases. Full article
(This article belongs to the Special Issue Plant Pathology and Epidemiology for Grain, Pulses, and Cereal Crops)
Show Figures

Figure 1

17 pages, 4604 KiB  
Article
The Migration, Diversity, and Evolution of Puccinia triticina in China
by Lin Zhang, Panpan Zhao, Qingfang Meng, Hongfei Yan and Daqun Liu
Plants 2024, 13(17), 2438; https://doi.org/10.3390/plants13172438 - 31 Aug 2024
Viewed by 602
Abstract
Wheat leaf rust, caused by Puccinia triticina, is one of the most common fungal diseases of wheat in China and occurs widely in various wheat-growing regions. To clarify the epidemic, spread rules, and population structure of P. triticina among different regions, 217 [...] Read more.
Wheat leaf rust, caused by Puccinia triticina, is one of the most common fungal diseases of wheat in China and occurs widely in various wheat-growing regions. To clarify the epidemic, spread rules, and population structure of P. triticina among different regions, 217 isolates of P. triticina collected from Hebei, Shandong, Sichuan, and Xinjiang in China were tested by 34 Thatcher near-isogenic lines and 21 pairs of EST-SSR primers. A total of 83 races were identified, and THTT, PHTT, THTS, and PHJT were the most predominant races in the four provinces in 2009. We found enriched virulence and genetic diversity in the four P. triticina populations and a significant correlation between genetic polymorphism and geographic regions. However, no significant correlation was found between virulence phenotypes and molecular genotypes. Moreover, a notable high level of gene flow (Nm = 2.82 > 1) among four P. triticina populations was detected. The genetic relationship among Hebei, Shandong, and Sichuan populations was close, possibly due to the spread of P. triticina from Sichuan to Shandong and then to Hebei. In contrast, the Xinjiang population was relatively independent. Genetic differentiation analysis showed some level of differentiation among or within populations of P. triticina in the four provinces, and the genetic variation within populations (74.97%) was higher than across populations (25.03%). Our study provides a basis for a better understanding of the regional migration, epidemic, and population structure of P. triticina in China. Full article
(This article belongs to the Special Issue Plant Pathology and Epidemiology for Grain, Pulses, and Cereal Crops)
Show Figures

Figure 1

10 pages, 880 KiB  
Article
Stem Rust Resistance and Resistance-Associated Genes in 64 Wheat Cultivars from Southern Huanghuai, China
by Yifan Wei, Xianxin Wu, Dongjun Liu, Huiyan Sun, Weifu Song and Tianya Li
Plants 2024, 13(16), 2286; https://doi.org/10.3390/plants13162286 - 17 Aug 2024
Viewed by 697
Abstract
Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a devastating fungal disease that affects wheat globally. The planting of resistant cultivars is the most cost-effective strategy for controlling this disease. The Huanghuai region, as a major wheat-growing [...] Read more.
Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a devastating fungal disease that affects wheat globally. The planting of resistant cultivars is the most cost-effective strategy for controlling this disease. The Huanghuai region, as a major wheat-growing area, plays a crucial role in the spread and prevalence of wheat stem rust in China. In this study, 64 wheat accessions from this region were tested at the adult stage against two major Pgt races, 34MKGQM and 21C3CTHQM. DNA markers associated with the known resistance genes Sr31, Sr24, Sr25, Sr26, and Sr38 were measured to determine their presence in the tested accessions. In the 2023 field tests, 5 (7.8%) accessions were immune to 21C3CTHQM and 34MKGQM, while 35 (54.7%) and 39 (60.9%) were moderately resistant and resistant, respectively. The remaining 20 (30.7%) accessions were moderately susceptible and susceptible. In the 2024 tests, 12 (18.8%) and 14 (21.9%) entries were immune to both races; 29 (45.3%) and 30 (46.9%) were moderately resistant and resistant, respectively. Only two cultivars, Xinong 816 and Yimai 211, were immune in both years, and three entries showed some degrees of resistance in both years. Seven cultivars, including Zhongzhimai 23, Longxing 1, Yunong 937, Huaguan 301, Wanke 800, Shaanhe 285, and Yunong 612, showed increased susceptibility. DNA markers showed that 30 entries carried Sr31, while 6 entries carried Sr38. Genes Sr24, Sr25, and Sr26, which confer good resistance to the globally prevalent cultivars TKTTF and TTTRF, were absent from the set of tested entries. While this study surveyed the resistance levels of a cross-section of wheat from the southern part of the Huanghuai region and confirmed the presence of two known resistance genes, the basis of immunity or high levels of resistance in several lines remains obscure. Full article
(This article belongs to the Special Issue Plant Pathology and Epidemiology for Grain, Pulses, and Cereal Crops)
Show Figures

Figure 1

13 pages, 3006 KiB  
Article
Wheat Leaf Rust Fungus Effector Protein Pt1641 Is Avirulent to TcLr1
by Jiaying Chang, Johannes Mapuranga, Ruolin Li, Yingdan Zhang, Jie Shi, Hongfei Yan and Wenxiang Yang
Plants 2024, 13(16), 2255; https://doi.org/10.3390/plants13162255 - 14 Aug 2024
Viewed by 1127
Abstract
Wheat leaf rust fungus is an obligate parasitic fungus that can absorb nutrients from its host plant through haustoria and secrete effector proteins into host cells. The effector proteins are crucial factors for pathogenesis as well as targets for host disease resistance protein [...] Read more.
Wheat leaf rust fungus is an obligate parasitic fungus that can absorb nutrients from its host plant through haustoria and secrete effector proteins into host cells. The effector proteins are crucial factors for pathogenesis as well as targets for host disease resistance protein recognition. Exploring the role of effector proteins in the pathogenic process of Puccinia triticina Eriks. (Pt) is of great significance for unraveling its pathogenic mechanisms. We previously found that a cysteine-rich effector protein, Pt1641, is highly expressed during the interaction between wheat and Pt, but its specific role in pathogenesis remains unclear. Therefore, this study employed techniques such as heterologous expression, qRT-PCR analysis, and host-induced gene silencing (HIGS) to investigate the role of Pt1641 in the pathogenic process of Pt. The results indicate that Pt1641 is an effector protein with a secretory function and can inhibit BAX-induced programmed cell death in Nicotiana benthamiana. qRT-PCR analyses showed that expression levels of Pt1641 were different during the interaction between the high-virulence strain THTT and low-virulence strains FGD and Thatcher, respectively. The highest expression level in the low-virulence strain FGD was four times that of the high-virulence strain THTT. The overexpression of Pt1641 in wheat near-isogenic line TcLr1 induced callose deposition and H2O2 production on TcLr1. After silencing Pt1641 in the Pt low-virulence strain FGD on wheat near-isogenic line TcLr1, the pathogenic phenotype of Pt physiological race FGD on TcLr1 changed from “;” to “3”, indicating that Pt1641 plays a non-toxic function in the pathogenicity of FGD to TcLr1. This study helps to reveal the pathogenic mechanism of wheat leaf rust and provides important guidance for the mining and application of Pt avirulent genes. Full article
(This article belongs to the Special Issue Plant Pathology and Epidemiology for Grain, Pulses, and Cereal Crops)
Show Figures

Figure 1

16 pages, 4039 KiB  
Article
Metabolomic Analyses Reveal That IAA from Serratia marcescens Lkbn100 Promotes Plant Defense during Infection of Fusarium graminearum in Sorghum
by Jichen Yan, Nawei Qi, Jing Xu, Lan Hu, Yu Jiang and Yuanjun Bai
Plants 2024, 13(16), 2184; https://doi.org/10.3390/plants13162184 - 7 Aug 2024
Viewed by 1081
Abstract
Global sorghum production has been significantly reduced due to the occurrence of sorghum root rot caused by the fungus Fusarium graminearum. The utilization of biocontrol microorganisms has emerged as an effective strategy. However, the underlying mechanisms remain unclear. Therefore, the aim of [...] Read more.
Global sorghum production has been significantly reduced due to the occurrence of sorghum root rot caused by the fungus Fusarium graminearum. The utilization of biocontrol microorganisms has emerged as an effective strategy. However, the underlying mechanisms remain unclear. Therefore, the aim of this study was to investigate the effectiveness of biocontrol bacteria in inducing sorghum resistance against sorghum root rot and explore the potential induced resistance mechanisms through metabolomics analysis. The results revealed that the biocontrol bacteria Lnkb100, identified as Serratia marcescens (GenBank: PP152264), significantly enhanced the resistance of sorghum against sorghum root rot and promoted its growth, leading to increased seed weight. Targeted metabolomics analysis demonstrated that the highest concentration of the hormone IAA (indole-3-acetic acid) was detected in the metabolites of Lnkb100. Treatment with IAA enhanced the activity of disease-related enzymes such as SOD, CAT, POD and PPO in sorghum, thereby improving its resistance against sorghum root rot. Further untargeted metabolomic analysis revealed that IAA treatment resulted in higher concentrations of metabolites involved in the resistance against F. graminearum, such as geniposidic acid, 5-L-Glutamyl-taurine, formononetin 7-O-glucoside-6″-O-malonate, as well as higher concentrations of the defense-related molecules volicitin and JA. Additionally, “secondary bile acid biosynthesis” and “glycerophospholipid metabolism” pathways were found to play significant roles in the defense response of sorghum against fungal infection. These findings provide a reliable theoretical basis for utilizing biocontrol microorganisms to control sorghum root rot. Full article
(This article belongs to the Special Issue Plant Pathology and Epidemiology for Grain, Pulses, and Cereal Crops)
Show Figures

Figure 1

11 pages, 4015 KiB  
Article
Overexpression of Calcineurin B-like Interacting Protein Kinase 31 Promotes Lodging and Sheath Blight Resistance in Rice
by Jingsheng Chen, Siting Wang, Shiqi Jiang, Tian Gan, Xin Luo, Rujie Shi, Yuanhu Xuan, Guosheng Xiao and Huan Chen
Plants 2024, 13(10), 1306; https://doi.org/10.3390/plants13101306 - 9 May 2024
Cited by 1 | Viewed by 1218
Abstract
A breakthrough “Green Revolution” in rice enhanced lodging resistance by using gibberellin-deficient semi-dwarf varieties. However, the gibberellic acid (GA) signaling regulation on rice disease resistance remains unclear. The resistance test showed that a positive GA signaling regulator DWARF1 mutant d1 was more susceptible [...] Read more.
A breakthrough “Green Revolution” in rice enhanced lodging resistance by using gibberellin-deficient semi-dwarf varieties. However, the gibberellic acid (GA) signaling regulation on rice disease resistance remains unclear. The resistance test showed that a positive GA signaling regulator DWARF1 mutant d1 was more susceptible while a negative GA signaling regulator Slender rice 1 (SLR1) mutant was less susceptible to sheath blight (ShB), one of the major rice diseases, suggesting that GA signaling positively regulates ShB resistance. To isolate the regulator, which simultaneously regulates rice lodging and ShB resistance, SLR1 interactors were isolated. Yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), and Co-IP assay results indicate that SLR1 interacts with Calcineurin B-like-interacting protein kinase 31 (CIPK31). cipk31 mutants exhibited normal plant height, but CIPK31 OXs showed semi-dwarfism. In addition, the SLR1 level was much higher in CIPK31 OXs than in the wild-type, suggesting that CIPK31 OX might accumulate SLR1 to inhibit GA signaling and thus regulate its semi-dwarfism. Recently, we demonstrated that CIPK31 interacts and inhibits Catalase C (CatC) to accumulate ROS, which promotes rice disease resistance. Interestingly, CIPK31 interacts with Vascular Plant One Zinc Finger 2 (VOZ2) in the nucleus, and expression of CIPK31 accumulated VOZ2. Inoculation of Rhizoctonia solani AG1-IA revealed that the voz2 mutant was more susceptible to ShB. Thus, these data prove that CIPK31 promotes lodging and ShB resistance by regulating GA signaling and VOZ2 in rice. This study provides a valuable reference for rice ShB-resistant breeding. Full article
(This article belongs to the Special Issue Plant Pathology and Epidemiology for Grain, Pulses, and Cereal Crops)
Show Figures

Figure 1

15 pages, 4617 KiB  
Article
OsJAZ4 Fine-Tunes Rice Blast Resistance and Yield Traits
by Mingfeng Zhang, Xiao Luo, Wei He, Min Zhang, Zhirong Peng, Huafeng Deng and Junjie Xing
Plants 2024, 13(3), 348; https://doi.org/10.3390/plants13030348 - 24 Jan 2024
Cited by 2 | Viewed by 1584
Abstract
JAZ proteins function as transcriptional regulators that form a jasmonic acid–isoleucine (JA-Ile) receptor complex with coronatine insensitive 1 (COI1) and regulate plant growth and development. These proteins also act as key mediators in signal transduction pathways that activate the defense-related genes. Herein, the [...] Read more.
JAZ proteins function as transcriptional regulators that form a jasmonic acid–isoleucine (JA-Ile) receptor complex with coronatine insensitive 1 (COI1) and regulate plant growth and development. These proteins also act as key mediators in signal transduction pathways that activate the defense-related genes. Herein, the role of OsJAZ4 in rice blast resistance, a severe disease, was examined. The mutation of OsJAZ4 revealed its significance in Magnaporthe oryzae (M. oryzae) resistance and the seed setting rate in rice. In addition, weaker M. oryzae-induced ROS production and expression of the defense genes OsO4g10010, OsWRKY45, OsNAC4, and OsPR3 was observed in osjaz4 compared to Nipponbare (NPB); also, the jasmonic acid (JA) and gibberellin4 (GA4) content was significantly lower in osjaz4 than in NPB. Moreover, osjaz4 exhibited a phenotype featuring a reduced seed setting rate. These observations highlight the involvement of OsJAZ4 in the regulation of JA and GA4 content, playing a positive role in regulating the rice blast resistance and seed setting rate. Full article
(This article belongs to the Special Issue Plant Pathology and Epidemiology for Grain, Pulses, and Cereal Crops)
Show Figures

Figure 1

11 pages, 2549 KiB  
Article
Codon Optimization Enables the Geneticin Resistance Gene to Be Applied Efficiently to the Genetic Manipulation of the Plant Pathogenic Fungus Botrytis cinerea
by Maoyao Tang, Yangyizhou Wang, Kexin Wang, Yuanhang Zhou, Enshuang Zhao, Hao Zhang, Mingzhe Zhang, Hang Yu, Xi Zhao and Guihua Li
Plants 2024, 13(2), 324; https://doi.org/10.3390/plants13020324 - 22 Jan 2024
Cited by 1 | Viewed by 1562
Abstract
Botrytis cinerea can infect almost all of the important horticultural crops and cause severe economic losses globally every year. Modifying candidate genes and studying the phenotypic changes are among the most effective ways to unravel the pathogenic mechanism of this crop killer. However, [...] Read more.
Botrytis cinerea can infect almost all of the important horticultural crops and cause severe economic losses globally every year. Modifying candidate genes and studying the phenotypic changes are among the most effective ways to unravel the pathogenic mechanism of this crop killer. However, few effective positive selection markers are used for B. cinerea genetic transformation, which limits multiple modifications to the genome, especially genes involving redundant functions. Here, we optimized a geneticin resistance gene, BcNPTII, based on the codon usage preference of B. cinerea. We found that BcNPTII can greatly increase the transformation efficiency of B. cinerea under G418 selection, with approximately 30 times higher efficiency than that of NPTII, which is applied efficiently to transform Magnaporthe oryzae. Using the gene replacement method, we successfully knocked out the second gene BOT2, with BcNPTII as the selection marker, from the mutant ΔoahA, in which OAHA was first replaced by the hygromycin resistance gene HPH in a field strain. We obtained the double knockout mutant ΔoahA Δbot2. Our data show that the codon-optimized BcNPTII is an efficient positive selection marker for B. cinerea transformation and can be used for various genetic manipulations in B. cinerea, including field wild-type strains. Full article
(This article belongs to the Special Issue Plant Pathology and Epidemiology for Grain, Pulses, and Cereal Crops)
Show Figures

Figure 1

16 pages, 4992 KiB  
Article
Stripe Rust Effector Pst_9302 Inhibits Wheat Immunity to Promote Susceptibility
by Haibin Zhao, Jiangyu Huang, Xiaoyan Zhao, Ligang Yu, Xiaodong Wang, Congcong Zhao, Hojjatollah Rabbani nasab, Chunlei Tang and Xiaojie Wang
Plants 2024, 13(1), 94; https://doi.org/10.3390/plants13010094 - 27 Dec 2023
Cited by 1 | Viewed by 1439
Abstract
Puccinia striiformis f. sp. tritici is an obligate biotrophic fungus that causes destructive stripe rust disease in wheat. During infection, Pst secretes virulence effectors via a specific infection structure—the haustorium—inside host cells to disturb host immunity and promote fungal colonization and expansion. Hence, [...] Read more.
Puccinia striiformis f. sp. tritici is an obligate biotrophic fungus that causes destructive stripe rust disease in wheat. During infection, Pst secretes virulence effectors via a specific infection structure—the haustorium—inside host cells to disturb host immunity and promote fungal colonization and expansion. Hence, the identification and functional analyses of Pst effectors are of great significance in deciphering the Pst pathogenicity mechanism. Here, we identified one candidate Pst effector Pst_9302 that could suppress Bax-triggered cell death in Nicotiana benthamiana. qRT-PCR analyses showed that the transcript levels of Pst_9302 were highly increased during the early infection stages of Pst. The transient expression of Pst_9302 in wheat via the type-three secretion system (T3SS) significantly inhibited the callose deposition induced by Pseudomonas syringae EtHAn. During wheat–Pst interaction, Pst_9302 overexpression suppressed reactive oxygen species (ROS) accumulation and cell death caused by the avirulent Pst race CYR23. The host-induced gene silencing (HIGS) of Pst_9302 resulted in decreased Pst pathogenicity with reduced infection area. The results suggest that Pst_9302 plays a virulence role in suppressing plant immunity and promoting Pst pathogenicity. Moreover, wheat voltage-dependent anion channel 1 protein (TaVDAC1) was identified as candidate Pst_9302-interacting proteins by yeast two-hybrid (Y2H) screening. Pull-down assays using the His-Pst_9302 and GST-TaVDAC1 protein verified their interactions. These results suggest that Pst_9302 may modulate wheat TaVDAC1 to regulate plant immunity. Full article
(This article belongs to the Special Issue Plant Pathology and Epidemiology for Grain, Pulses, and Cereal Crops)
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 2154 KiB  
Review
Plasmodesmata Function and Callose Deposition in Plant Disease Defense
by Jingsheng Chen, Xiaofeng Xu, Wei Liu, Ziyang Feng, Quan Chen, You Zhou, Miao Sun, Liping Gan, Tiange Zhou and Yuanhu Xuan
Plants 2024, 13(16), 2242; https://doi.org/10.3390/plants13162242 - 13 Aug 2024
Cited by 1 | Viewed by 1237
Abstract
Callose, found in the cell walls of higher plants such as β-1,3-glucan with β-1,6 branches, is pivotal for both plant development and responses to biotic and abiotic stressors. Plasmodesmata (PD), membranous channels linking the cytoplasm, plasma membrane, and endoplasmic reticulum of adjacent cells, [...] Read more.
Callose, found in the cell walls of higher plants such as β-1,3-glucan with β-1,6 branches, is pivotal for both plant development and responses to biotic and abiotic stressors. Plasmodesmata (PD), membranous channels linking the cytoplasm, plasma membrane, and endoplasmic reticulum of adjacent cells, facilitate molecular transport, crucial for developmental and physiological processes. The regulation of both the structural and transport functions of PD is intricate. The accumulation of callose in the PD neck is particularly significant for the regulation of PD permeability. This callose deposition, occurring at a specific site of pathogenic incursion, decelerates the invasion and proliferation of pathogens by reducing the PD pore size. Scholarly investigations over the past two decades have illuminated pathogen-induced callose deposition and the ensuing PD regulation. This gradual understanding reveals the complex regulatory interactions governing defense-related callose accumulation and protein-mediated PD regulation, underscoring its role in plant defense. This review systematically outlines callose accumulation mechanisms and enzymatic regulation in plant defense and discusses PD’s varied participation against viral, fungal, and bacterial infestations. It scrutinizes callose-induced structural changes in PD, highlighting their implications for plant immunity. This review emphasizes dynamic callose calibration in PD constrictions and elucidates the implications and potential challenges of this intricate defense mechanism, integral to the plant’s immune system. Full article
(This article belongs to the Special Issue Plant Pathology and Epidemiology for Grain, Pulses, and Cereal Crops)
Show Figures

Figure 1

20 pages, 4586 KiB  
Review
Sterility Mosaic Disease of Pigeonpea (Cajanus cajan (L.) Huth): Current Status, Disease Management Strategies, and Future Prospects
by B. R. Sayiprathap, A. K. Patibanda, Muttappagol Mantesh, Shridhar Hiremath, N. Sagar, C. N. Lakshminarayana Reddy, C. R. Jahir Basha, S. E. Diwakar Reddy, M. Kasi Rao, R. M. Nair and H. K. Sudini
Plants 2024, 13(15), 2146; https://doi.org/10.3390/plants13152146 - 2 Aug 2024
Cited by 1 | Viewed by 1241
Abstract
Pigeonpea (Cajanus cajan) is one of the important grain legume crops cultivated in the semi-arid tropics, playing a crucial role in the economic well-being of subsistence farmers. India is the major producer of pigeonpea, accounting for over 75% of the world’s [...] Read more.
Pigeonpea (Cajanus cajan) is one of the important grain legume crops cultivated in the semi-arid tropics, playing a crucial role in the economic well-being of subsistence farmers. India is the major producer of pigeonpea, accounting for over 75% of the world’s production. Sterility mosaic disease (SMD), caused by Pigeonpea sterility mosaic virus (PPSMV) and transmitted by the eriophyid mite (Aceria cajani), is a major constraint to pigeonpea cultivation in the Indian subcontinent, leading to potential yield losses of up to 100%. The recent characterization of another Emaravirus associated with SMD has further complicated the etiology of this challenging viral disease. This review focuses on critical areas, including the current status of the disease, transmission and host-range, rapid phenotyping techniques, as well as available disease management strategies. The review concludes with insights into the future prospects, offering an overview and direction for further research and management strategies. Full article
(This article belongs to the Special Issue Plant Pathology and Epidemiology for Grain, Pulses, and Cereal Crops)
Show Figures

Figure 1

Back to TopTop