Plant Viruses and Viroids: Diagnostics, Epidemiology, and Control in the Context of Global Change

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Protection and Biotic Interactions".

Deadline for manuscript submissions: closed (20 March 2024) | Viewed by 6202

Special Issue Editors


E-Mail Website
Guest Editor
Istituto Agronomico Mediterraneo of Bari, Via Ceglie 9, 70010 Valenzano, BA, Italy
Interests: biotechnology; plant virology; virus- and virus-like diseases; host-parasite interaction; epidemiology; diagnostics; evolution and taxonomy

E-Mail Website
Guest Editor
Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria 21934, Egypt
Interests: microbiology; plant virology; molecular biology; plant pathology; biological control

Special Issue Information

Dear Colleagues,

Viral and viroidal diseases have gained prominence in plant pathology due to their nature of being “non-treatable”, not as easily eliminated from infected plants as other pathogens, i.e., fungi, bacteria, and responsible for large yield losses for farmers when they are pathogenic. Undoubtedly, identifying and studying the interaction of these pathogens with the host and the environment is now easier than ever before. Conventional molecular, serological, and biological techniques previously used to approach these agents are now extensively supported by sophisticated technologies, e.g., high-throughput sequencing, nanobodies, and biomolecules, which are revolutionizing the time needed and methods of their identification, characterization, and diagnosis. Understanding the mechanisms of action of the different elicitors involved in the epidemiology of viral and viroidal diseases, in different ecological contexts, becomes fundamental for formulating effective management practices for these pathogens.

Dr. Toufic Elbeaino
Dr. Ahmed Abdelkhalek
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • virulence
  • pathogenesis
  • diagnosis
  • identification
  • characterization
  • sequencing
  • recombination
  • variability
  • control
  • management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 903 KiB  
Article
Tracking Sweet Potato Leaf Curl Virus through Field Production: Implications for Sustainable Sweetpotato Production and Breeding Practices
by Sharon A. Andreason, Petrina McKenzie-Reynolds, Kaitlyn M. Whitley, John Coffey, Alvin M. Simmons and Phillip A. Wadl
Plants 2024, 13(9), 1267; https://doi.org/10.3390/plants13091267 - 2 May 2024
Cited by 1 | Viewed by 1244
Abstract
Sweet potato leaf curl virus (SPLCV) is a whitefly-transmitted begomovirus infecting sweetpotato and other morning glory (Convolvulaceae) species worldwide. The virus is widespread at the USDA, ARS, U.S. Vegetable Laboratory (USVL), and testing of germplasm maintained in the breeding program indicates nearly 100% [...] Read more.
Sweet potato leaf curl virus (SPLCV) is a whitefly-transmitted begomovirus infecting sweetpotato and other morning glory (Convolvulaceae) species worldwide. The virus is widespread at the USDA, ARS, U.S. Vegetable Laboratory (USVL), and testing of germplasm maintained in the breeding program indicates nearly 100% infection in storage roots of materials propagated for at least four years. Prior to the public release of new germplasm, viruses must be eliminated via laborious and time-consuming meristem-tip culture. The identification of virus-free seedlings early in the selection process can offer an alternative to meristem-tip culture. In this study, we investigated the transmission of SPLCV over two years of consecutive field plantings (early and late) of sweetpotato. While SPLCV is endemic at the USVL, virus transmission pressure over the typical cultivation season is unknown, and avoidance of virus transmission paired with the selection and maintenance of clean material may be a viable alternative to virus elimination. In 2022, the storage roots of 39 first-year seedling (FYS) selections were tested for SPLCV after early-season cultivation, revealing a single selection (2.6%) with a positive test. Similar testing was conducted in 2023 with no SPLCV-positive FYS selections detected. To further assess SPLCV acquisition in the field, replicated late-season plantings of each selected FYS (n = 37) were monitored from planting to harvest. Testing was conducted at 60 and 120 days after planting (DAP). Approximately 35% of the bulk samples were infected at 60 DAP, and infection increased to 52.3% by 120 DAP. Testing of individuals within selected positive bulked samples did not support 100% infection at harvest. Altogether, these results demonstrate that SPLCV transmission during early planting is sufficiently low to facilitate the maintenance of virus-free selections, offering an alternative to virus cleaning and a cultivation strategy that may be leveraged for production. Full article
Show Figures

Figure 1

17 pages, 2207 KiB  
Article
Protective Activity of Rhizobium leguminosarum bv. viciae Strain 33504-Mat209 against Alfalfa Mosaic Virus Infection in Faba Bean Plants
by Ahmed Abdelkhalek, Shimaa Bashir, Hamada El-Gendi, Toufic Elbeaino, Wafaa M. Abd El-Rahim and Hassan Moawad
Plants 2023, 12(14), 2658; https://doi.org/10.3390/plants12142658 - 16 Jul 2023
Cited by 3 | Viewed by 1879
Abstract
The application of Rhizobium spp., nitrogen-fixing plant growth-promoting rhizobacteria, as biocontrol agents to enhance systemic disease resistance against plant viral infections is a promising approach towards achieving sustainable and eco-friendly agriculture. However, their potential as antivirals and biocontrol agents is less studied. Herein, [...] Read more.
The application of Rhizobium spp., nitrogen-fixing plant growth-promoting rhizobacteria, as biocontrol agents to enhance systemic disease resistance against plant viral infections is a promising approach towards achieving sustainable and eco-friendly agriculture. However, their potential as antivirals and biocontrol agents is less studied. Herein, the capability of Rhizobium leguminosarum bv. viciae strain 33504-Mat209 was evaluated to promote plant growth and enhance faba bean systemic resistance against alfalfa mosaic virus (AMV) infection. Under greenhouse conditions, the soil inoculation with 3504-Mat209 resulted in notable improvements in growth and an increase in chlorophyll content. This led to a marked decrease in the disease incidence, severity, and viral accumulation level by 48, 74, and 87%, respectively. The protective effect of 33504-Mat209 was linked to significant decreases in non-enzymatic oxidative stress indicators, specifically H2O2 and MDA. Additionally, there were significant increases in the activity of reactive oxygen species scavenging enzymes, such as peroxidase (POX) and polyphenol oxidase (PPO), compared to the virus treatment. The elevated transcript levels of polyphenolic pathway genes (C4H, HCT, C3H, and CHS) and pathogenesis-related protein-1 were also observed. Out of 18 detected compounds, HPLC analysis revealed that 33504-Mat209-treated plants increased the accumulation of several compounds, such as gallic acid, chlorogenic acid, catechin, pyrocatechol, daidzein, quercetin, and cinnamic acid. Therefore, the ability of 33504-Mat209 to promote plant growth and induce systemic resistance against AMV infection has implications for utilizing 33504-Mat209 as a fertilizer and biocontrol agent. This could potentially introduce a new strategy for safeguarding crops, promoting sustainability, and ensuring environmental safety in the agricultural sector. As far as we know, this is the first study of biological control of AMV mediated by Rhizobium spp. in faba bean plants. Full article
Show Figures

Figure 1

20 pages, 4780 KiB  
Article
Antiviral Activity of Biosynthesized Silver Nanoparticles from Pomegranate (Punica granatum L.) Peel Extract against Tobacco Mosaic Virus
by Abdulaziz A. Al-Askar, Dalia G. Aseel, Hamada El-Gendi, Sherien Sobhy, Marwa A. Samy, Esraa Hamdy, Sarah El-Messeiry, Said I. Behiry, Toufic Elbeaino and Ahmed Abdelkhalek
Plants 2023, 12(11), 2103; https://doi.org/10.3390/plants12112103 - 25 May 2023
Cited by 7 | Viewed by 2502
Abstract
Tobacco mosaic virus (TMV) is a major pathogen affecting tomato plants worldwide. The efficacy of silver nanoparticles (Ag-NPs) mediated by Punica granatum biowaste peel extract in mitigating the negative impact of TMV infection on tomato growth and oxidative stress was investigated through scanning [...] Read more.
Tobacco mosaic virus (TMV) is a major pathogen affecting tomato plants worldwide. The efficacy of silver nanoparticles (Ag-NPs) mediated by Punica granatum biowaste peel extract in mitigating the negative impact of TMV infection on tomato growth and oxidative stress was investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Visible (UV-Vis) spectrophotometer, X-ray Diffraction (XRD), dynamic light scattering (DLS), zeta potential, energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectra (FTIR). Results of SEM analysis of green Ag-NPs revealed the presence of condensed spherical or round NPs with diameters ranging between 61 and 97 nm. TEM confirmed the SEM results and showed round-shaped Ag-NPs with an average size of 33.37 ± 12.7 nm. The elemental analysis (EDX) of prepared Ag-NPs revealed the presence of elemental Ag as a major peak (64.43%) at 3–3.5 KeV. The FTIR revealed several functional groups on the prepared Ag-NPs, for which three treatment strategies for Ag-NP applications were evaluated in the greenhouse study and compared to inoculated TMV and control plants: pre-infection treatment (TB), post-infection treatment (TA), and dual treatment (TD). The results showed that the TD strategy is the most effective in improving tomato growth and reducing viral replication, whereas all Ag-NP treatments (TB, TA, and TD) were found to significantly increase expression of the pathogenesis-related (PR) genes PR-1 and PR-2, as well as polyphenolic compounds, HQT, and C4H genes compared to control plants. In contrast, the flavonoid content of tomato plants was not affected by the viral infection, while the phenolic content was significantly reduced in the TMV group. Furthermore, TMV infection led to a significant increase in oxidative stress markers MDA and H2O2, as well as a reduction in the enzymatic activity of the antioxidants PPO, SOD, and POX. Our results clearly showed that the application of Ag-NPs on TMV-infected plants reduces virus accumulation, delays viral replication in all treatments, and greatly enhances the expression of the CHS gene involved in flavonoid biosynthesis. Overall, these findings suggest that treatment with Ag-NPs may be an effective strategy to mitigate the negative impact of TMV infection on tomato plants. Full article
Show Figures

Figure 1

Back to TopTop