Advanced Polymers for Medical Applications, 2nd Edition

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: 30 March 2025 | Viewed by 661

Special Issue Editor


E-Mail Website
Guest Editor
Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil
Interests: regenerative medicine; scaffolds; fibrin sealant; photobiomodulation; bone repair; nerve regeneration; nerve repair; bone regeneration; fibrin biopolymer; low-level laser therapy
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Tissue engineering, currently in the medical field, has as a great challenge to develop research investigating new methods of treatments available in the face of injuries where reconstruction does not occur independently, with the objective of forming a new tissue with morphofunctional characteristics identical to the original tissue. This research, aiming at translational medicine, occurs in an interdisciplinary way within the medical area in various pathologies. Therefore, this Special Issue seeks to confront scientific barriers with innovations in polymeric materials, from their production, development, and pre-clinical and clinical studies, of natural or synthetic origin, which bring positive and beneficial effects from the bench to the bed.

This Special Issue is dedicated to reviews, meta-analyses, clinical, and preclinical studies of the different uses of polymers in medicine.

Prof. Dr. Daniela Vieira Buchaim
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymers
  • medicine
  • scaffolds
  • regenerative medicine
  • biomaterials
  • biopolymers
  • 3D bioprinting
  • translational science
  • tissue regeneration
  • drug delivery system

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 76728 KiB  
Article
Innovative Biocompatible Blend Scaffold of Poly(hydroxybutyrate-co-hydroxyvalerate) and Poly(ε-caprolactone) for Bone Tissue Engineering: In Vitro and In Vivo Evaluation
by Amália Baptista-Perianes, Marcia Mayumi Omi Simbara, Sônia Maria Malmonge, Marcelo Rodrigues da Cunha, Daniela Vieira Buchaim, Maria Angelica Miglino, Elias Naim Kassis, Rogerio Leone Buchaim and Arnaldo Rodrigues Santos, Jr.
Polymers 2024, 16(21), 3054; https://doi.org/10.3390/polym16213054 - 30 Oct 2024
Viewed by 513
Abstract
This study evaluated the biocompatibility of dense and porous forms of Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), Poly(ε-caprolactone) (PCL), and their 75/25 blend for bone tissue engineering applications. The biomaterials were characterized morphologically using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), and the thickness [...] Read more.
This study evaluated the biocompatibility of dense and porous forms of Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), Poly(ε-caprolactone) (PCL), and their 75/25 blend for bone tissue engineering applications. The biomaterials were characterized morphologically using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), and the thickness and porosity of the scaffolds were determined. Functional assessments of mesenchymal stem cells (MSCs) included the MTT assay, alkaline phosphatase (ALP) production, and morphological and cytochemical analyses. Moreover, these polymers were implanted into rats to evaluate their in vivo performance. The morphology and FTIR spectra of the scaffolds were consistent with the expected results. Porous polymers were thicker than dense polymers, and porosity was higher than 92% in all samples. The cells exhibited good viability, activity, and growth on the scaffolds. A higher number of cells was observed on dense polymers, likely due to their smaller surface area. ALP production occurred in all samples, but enzyme activity was more intense in PCL samples. The scaffolds did not interfere with the osteogenic capacity of MSCs, and mineralized nodules were present in all samples. Histological analysis revealed new bone formation in all samples, although pure PHBV exhibited lower results compared to the other blends. In vivo results indicated that dense PCL and the dense 75/25 blend were the best materials tested, with PCL tending to improve the performance of PHBV in vivo. Full article
(This article belongs to the Special Issue Advanced Polymers for Medical Applications, 2nd Edition)
Show Figures

Figure 1

Back to TopTop