Exploration, Exploitation and Utilization of Coal and Gas Resources, 2nd Edition

A special issue of Processes (ISSN 2227-9717). This special issue belongs to the section "Chemical Processes and Systems".

Deadline for manuscript submissions: 10 March 2025 | Viewed by 2770

Special Issue Editors


E-Mail Website
Guest Editor
School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454003, China
Interests: coalbed methane geology; carbon dioxide geological storage; gas injected for enhanced coalbed methane recovery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Coal is the basis of global industry, and coalbed methane, as its accompanying mineral, is a clean, unconventional natural gas energy source. Not only does its mining and utilization effectively reduce coal mine gas disasters and improve coal mine production safety, it also increases the amount of new energy that is generated and reduces greenhouse gas emissions. It has threefold significance in safety, environmental protection, and the economy. Scientists have gained important knowledge on the clean utilization of coal and the development of unconventional natural gas, especially regarding the importance of measuring natural gas from coal (such as coalbed methane, shale gas, and tight sandstone gas) to mitigate global warming. Benefiting from previous research and scientific and technological progress, research on the physical properties of coal and unconventional natural gas reservoirs associated with coal mining has changed from the macrolevel to the micro- and ultra-microlevels, and exploration and development has changed from shallow to deep mining. The technologies involved are also very different, such as underground coal gasification technology, gas-injection-enhanced (CO2, N2) coalbed methane mining technology, liquid nitrogen freeze–thaw fracturing technology, shock-wave-enhanced permeability technology, coal series combined-layer gas mining technology, etc. All of these will be important components of future unconventional natural gas exploration and development.

The specific purpose of this Special Issue is to (1) comprehensively review the research progress in the exploration, development, and utilization of coal-based natural gas; (2) solve the bottleneck problem encountered in deep coalbed methane exploration and development; and (3) overcome the obstacles of CO2 geological storage and the efficient mining of coal-based gas.

Topics of interest for publication include, but are not limited to, the following:

  • The enrichment, accumulation, and evolution of coal measure gas;
  • The evaluation of coal measure gas reservoirs;
  • Drainage performance and reservoir parameter variation;
  • Gas injection (CO2/N2) stimulation technology;
  • Optimal evaluation technologies for CO2 geological storage.

Dr. Junjian Zhang
Dr. Zhenzhi Wang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Processes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • unconventional resources
  • coalbed methane
  • coal measure gas
  • geological CO2
  • simulation modeling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 3320 KiB  
Article
Predicting Water Flowing Fracture Zone Height Using GRA and Optimized Neural Networks
by Haofu Dong, Genfa Yang, Keyin Guo, Junyu Xu, Deqiang Liu, Jin Han, Dongrui Shi and Jienan Pan
Processes 2024, 12(11), 2513; https://doi.org/10.3390/pr12112513 - 12 Nov 2024
Viewed by 365
Abstract
As coal mining depths continue to rise, consideration of WFFZ elevations is becoming increasingly important to mine safety. The goal was to accurately predict the height of the WFFZ to effectively prevent and manage possible roof water catastrophes and ensure the ongoing safety [...] Read more.
As coal mining depths continue to rise, consideration of WFFZ elevations is becoming increasingly important to mine safety. The goal was to accurately predict the height of the WFFZ to effectively prevent and manage possible roof water catastrophes and ensure the ongoing safety of the mine. To achieve this goal, we combined the particle swarm optimisation (PSO) algorithm with a backpropagation neural network (BPNN) in order to enhance the accuracy of the forecast. The present study draws upon the capacity of the PSO algorithm to conduct global searches and the nonlinear mapping capability of the BPNN. Through grey relational analysis (GRA), the order of the correlation degree was as follows: mining thickness > mining depth > overburden structure > mining width > mining dip. GRA has identified the degree of correlation between five influencing factors and the height of the WFFZ, among these, mining thickness, mining depth, overburden structure and mining width all show strong correlations, and the mining dip of the coal seam shows a good correlation. The weight ranking obtained by the PSO-BPNN method was the same as that obtained by the GRA method. Based on two actual cases, the relative errors of the obtained prediction results after PSO implementation were 2.97% and 3.47%, while the relative errors of the BPNN before optimisation were 18.46% and 4.34%, respectively, indicating that the PSO-BPNN method provides satisfactory prediction results and demonstrating that the PSO-optimised BPNN is easy to use and yields reliable results. In this paper, the height of the WFFZ model under the influence of five factors is only established for the Northwest Mining Area. With the continuous progress of technology and research, the neural network can consider more factors affecting the height of hydraulic fracturing development zones in the future to improve the comprehensiveness and accuracy of prediction. Full article
Show Figures

Figure 1

13 pages, 2366 KiB  
Article
Numerical Simulation of the Coal Measure Gas Accumulation Process in Well Z-7 in Qinshui Basin
by Gaoyuan Yan, Yu Song, Fangkai Quan, Qiangqiang Cheng and Peng Wu
Processes 2024, 12(11), 2491; https://doi.org/10.3390/pr12112491 - 9 Nov 2024
Viewed by 452
Abstract
The process of coal measure gas accumulation is relatively complex, involving multiple physicochemical processes such as migration, adsorption, desorption, and seepage of multiphase fluids (e.g., methane and water) in coal measure strata. This process is constrained by multiple factors, including geological structure, reservoir [...] Read more.
The process of coal measure gas accumulation is relatively complex, involving multiple physicochemical processes such as migration, adsorption, desorption, and seepage of multiphase fluids (e.g., methane and water) in coal measure strata. This process is constrained by multiple factors, including geological structure, reservoir physical properties, fluid pressure, and temperature. This study used Well Z-7 in the Qinshui Basin as the research object as well as numerical simulations to reveal the processes of methane generation, migration, accumulation, and dissipation in the geological history. The results indicate that the gas content of the reservoir was basically zero in the early stage (before 25 Ma), and the gas content peaks all appeared after the peak of hydrocarbon generation (after 208 Ma). During the peak gas generation stage, the gas content increased sharply in the early stages. In the later stage, because of the pressurization of the hydrocarbon generation, the caprock broke through and was lost, and the gas content decreased in a zigzag manner. The reservoirs in the middle and upper parts of the coal measure were easily charged, which was consistent with the upward trend of diffusion and dissipation and had a certain relationship with the cumulative breakout and seepage dissipation. The gas contents of coal, shale, and tight sandstone reservoirs were positively correlated with the mature hydrocarbon generation of organic matter in coal seams, with the differences between different reservoirs gradually narrowing over time. Full article
Show Figures

Figure 1

16 pages, 1099 KiB  
Article
Geophysical Monitoring Technologies for the Entire Life Cycle of CO2 Geological Sequestration
by Chenyang Li and Xiaoli Zhang
Processes 2024, 12(10), 2258; https://doi.org/10.3390/pr12102258 - 16 Oct 2024
Viewed by 795
Abstract
Geophysical monitoring of CO2 geological sequestration represents a critical technology for ensuring the long-term safe storage of CO2 while verifying its characteristics and dynamic changes. Currently, the primary geophysical monitoring methods employed in CO2 geological sequestration include seismic, fiber optic, [...] Read more.
Geophysical monitoring of CO2 geological sequestration represents a critical technology for ensuring the long-term safe storage of CO2 while verifying its characteristics and dynamic changes. Currently, the primary geophysical monitoring methods employed in CO2 geological sequestration include seismic, fiber optic, and logging technologies. Among these methods, seismic monitoring techniques encompass high-resolution P-Cable three-dimensional seismic systems, delayed vertical seismic profiling technology, and four-dimensional distributed acoustic sensing (DAS). These methods are utilized to monitor interlayer strain induced by CO2 injection, thereby indirectly determining the injection volume, distribution range, and potential diffusion pathways of the CO2 plume. In contrast, fiber optic monitoring primarily involves distributed fiber optic sensing (DFOS), which can be further classified into distributed acoustic sensing (DAS) and distributed temperature sensing (DTS). This technology serves to complement seismic monitoring in observing interlayer strain resulting from CO2 injection. The logging techniques utilized for monitoring CO2 geological sequestration include neutron logging methods, such as thermal neutron imaging and pulsed neutron gamma-ray spectroscopy, which are primarily employed to assess the sequestration volume and state of CO2 plumes within a reservoir. Seismic monitoring technology provides a broader monitoring scale (ranging from dozens of meters to kilometers), while logging techniques operate at centimeter to meter scales; however, their results can be significantly affected by the heterogeneity of a reservoir. Full article
Show Figures

Figure 1

13 pages, 19727 KiB  
Article
Oolitic Sedimentary Characteristics of the Upper Paleozoic Bauxite Series in the Eastern Ordos Basin and Its Significance for Oil and Gas Reservoirs
by Fengyu Sun, Changling Qu, Gaoshe Cao, Liqin Xie, Xiaohu Shi, Shengtao Luo, Zhuang Liu, Ling Zhang, Xiaochen Ma, Xinhang Zhou, Sen Zhu and Zhenzhi Wang
Processes 2024, 12(10), 2123; https://doi.org/10.3390/pr12102123 - 29 Sep 2024
Viewed by 851
Abstract
In recent years, great breakthroughs have been made in gas explorations of the Upper Paleozoic bauxite series in the Longdong area of the Ordos Basin, challenging the understanding that bauxite is not an effective reservoir. Moreover, studying the reservoir characteristics of bauxite is [...] Read more.
In recent years, great breakthroughs have been made in gas explorations of the Upper Paleozoic bauxite series in the Longdong area of the Ordos Basin, challenging the understanding that bauxite is not an effective reservoir. Moreover, studying the reservoir characteristics of bauxite is crucial for oil and gas exploration. Taking the bauxite series in the Longdong area as an example, this study systematically collects data from previous publications and analyzes the petrology, mineralogy, oolitic micro-morphology, chemical composition, and other sedimentary characteristics of the bauxite series in the study area using field outcrops, core observations, rock slices, cast slices, X-ray diffraction analysis, scanning electron microscopy and energy spectra, and so on. In this study, the oolitic microscopic characteristics of the bauxite reservoir and the significance of oil and gas reservoirs are described. The results show that the main minerals in the bauxite reservoir are boehmite and clay minerals composed of 73.5–96.5% boehmite, with an average of 90.82%. The rocks are mainly bauxitic mudstone and bauxite. A large number of oolites are observable in the bauxite series, and corrosion pores and intercrystalline pores about 8–20 μm in size have generally developed. These pores are important storage spaces in the reservoir. The brittleness index of the bauxite series was found to be as high as 99.3%, which is conducive to subsequent mining and fracturing. The main gas source rocks of oolitic bauxite rock and the Paleozoic gas series are the coal measure source rocks of the Upper Paleozoic. The oolitic bauxite reservoirs in the study area generally have obvious gas content, but the continuity of the planar distribution of the bauxite reservoirs is poor, providing a scientific basis for studying bauxite reservoirs and improving the exploratory effects of bauxite gas reservoirs. Full article
Show Figures

Figure 1

Back to TopTop