Effects of Mycotoxins on Animals

A special issue of Toxins (ISSN 2072-6651). This special issue belongs to the section "Mycotoxins".

Deadline for manuscript submissions: closed (30 October 2023) | Viewed by 18108

Special Issue Editors


E-Mail Website
Guest Editor
College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, China
Interests: toxins on animals health; animal nutrition; feed science

E-Mail Website
Co-Guest Editor
College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, China
Interests: animal nutrition and feed science; amino acid; intestinal health; toxins on animals health
College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an 271018, China
Interests: animal nutrition and feed science; swine nutrition; toxins on animals health

Special Issue Information

Dear Colleagues,

The effects and mechanisms of toxins from animals, microbes, plants and the environment on animal health have received widespread attention. Moreover, many researchers explored the mechanisms of toxins on animals. The aim and scope of this Issue include the effects of toxins on animal physiology, animal metabolism and animal health including intestine health, reproduction, and immunity; the relationship between toxins and animal nutrition; the toxicology of toxins; the mechanism of toxins on animals.

Previously, there were many papers focused on the effects and toxicology of toxins have been published in the journal. The cutting-edge research may be the crossover between different disciplines. Here, this should be the toxins and other research on animals including animal nutrition, physiology, metabolism and so on. In this Special Issue, we are soliciting articles, reviews and communication papers focusing on the effects of toxins on animals.

Prof. Dr. Shuzhen Jiang
Prof. Dr. Ning Jiao
Dr. Yang Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a double-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxins is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • toxins
  • toxins and animal nutrition
  • toxins and animal physiology
  • toxins and metabolism
  • toxicology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2814 KiB  
Article
Duration of Zearalenone Exposure Has Implications on Health Parameters of Lactating Cows
by Raul Rivera-Chacon, Thomas Hartinger, Ezequias Castillo-Lopez, Claudia Lang, Felipe Penagos-Tabares, Rita Mühleder, Rana Muhammad Atif, Johannes Faas, Qendrim Zebeli and Sara Ricci
Toxins 2024, 16(3), 116; https://doi.org/10.3390/toxins16030116 - 27 Feb 2024
Viewed by 1671
Abstract
There is a limited research focus on evaluating the detrimental effects of prolonged zearalenone (ZEN) intake on dairy cows’ health under controlled conditions. This experiment was conducted to evaluate whether the length of exposure to a ZEN-contaminated total mixed ration (TMR) at a [...] Read more.
There is a limited research focus on evaluating the detrimental effects of prolonged zearalenone (ZEN) intake on dairy cows’ health under controlled conditions. This experiment was conducted to evaluate whether the length of exposure to a ZEN-contaminated total mixed ration (TMR) at a level of 9.45 mg per day can negatively influence animal health parameters, such as milk composition, rumen and fecal fermentation, and the chewing activity of lactating dairy cows. For this experiment, we used 18 lactating Simmental cows that were fed a diet of 60% forage and 40% concentrate (on dry matter basis) for 26 consecutive days. The first 4 days were for adaptation prior to the first sampling day (day 0). The sampling events took place on day 0 (baseline) without ZEN, followed by day 1, day 7, day 14, and day 21 (with toxin). Dry matter intake (DMI) and ruminating chews per minute increased on the third week of ZEN inclusion; meanwhile, ruminating, eating, and drinking times were not affected. Most milk composition variables were also unaffected. Rumen fluid osmolality increased on day 21 and total short-chain fatty acids (SCFA) of ruminal fluid decreased on day 7. Fecal SCFA increased on day 21 and the acetate-to-propionate ratio increased from day 1 onwards, showing the influence of toxin intake. Animal health parameters, like heart rate, respiratory rate, and body temperature, were negatively influenced by ZEN intake, all increasing consistently on days 4 and 6, 9 and 12, and 16 and 18, respectively. The liver enzyme glutamate dehydrogenase decreased in response to ZEN intake on day 7. A total daily ZEN intake at the level of 9.45 mg did not show detrimental effects on DMI. Nevertheless, certain health parameters were negatively affected, including body temperature, respiratory rate, and heart rate, starting from the 7th day of ZEN intake, with additional signs of possible loss of water balance on the last sampling day. Full article
(This article belongs to the Special Issue Effects of Mycotoxins on Animals)
Show Figures

Figure 1

19 pages, 10885 KiB  
Article
Deciphering the Hazardous Effects of AFB1 and T-2 Toxins: Unveiling Toxicity and Oxidative Stress Mechanisms in PK15 Cells and Mouse Kidneys
by Shuai Xiao, Yingxin Wu, Suisui Gao, Mingxia Zhou, Zhiwei Liu, Qianbo Xiong, Lihuang Jiang, Guoxiang Yuan, Linfeng Li and Lingchen Yang
Toxins 2023, 15(8), 503; https://doi.org/10.3390/toxins15080503 - 14 Aug 2023
Cited by 8 | Viewed by 1647
Abstract
In China, animal feeds are frequently contaminated with a range of mycotoxins, with Aflatoxin B1 (AFB1) and T-2 toxin (T-2) being two highly toxic mycotoxins. This study investigates the combined nephrotoxicity of AFB1 and T-2 on PK15 cells and murine renal tissues and [...] Read more.
In China, animal feeds are frequently contaminated with a range of mycotoxins, with Aflatoxin B1 (AFB1) and T-2 toxin (T-2) being two highly toxic mycotoxins. This study investigates the combined nephrotoxicity of AFB1 and T-2 on PK15 cells and murine renal tissues and their related oxidative stress mechanisms. PK15 cells were treated with the respective toxin concentrations for 24 h, and oxidative stress-related indicators were assessed. The results showed that the combination of AFB1 and T-2 led to more severe cellular damage and oxidative stress compared to exposure to the individual toxins (p < 0.05). In the in vivo study, pathological examination revealed that the kidney tissue of mice exposed to the combined toxins showed signs of glomerular atrophy. The contents of oxidative stress-related indicators were significantly increased in the kidney tissue (p < 0.05). These findings suggest that the combined toxins cause significant oxidative damage to mouse kidneys. The study highlights the importance of considering the combined effects of mycotoxins in animal feed, particularly AFB1 and T-2, which can lead to severe nephrotoxicity and oxidative stress in PK15 cells and mouse kidneys. The findings have important implications for animal feed safety and regulatory policy. Full article
(This article belongs to the Special Issue Effects of Mycotoxins on Animals)
Show Figures

Figure 1

17 pages, 4562 KiB  
Article
Vitamin D Supplementation Impacts Calcium and Phosphorus Metabolism in Piglets Fed a Diet Contaminated with Deoxynivalenol and Challenged with Lipopolysaccharides
by Béatrice Sauvé, Younes Chorfi, Marie-Pierre Létourneau Montminy and Frédéric Guay
Toxins 2023, 15(6), 394; https://doi.org/10.3390/toxins15060394 - 13 Jun 2023
Cited by 9 | Viewed by 2187
Abstract
Using alternative feed ingredients in pig diets can lead to deoxynivalenol (DON) contamination. DON has been shown to induce anorexia, inflammation, and—more recently—alterations in the vitamin D, calcium, and phosphorus metabolisms. Adding vitamin D supplementation in the form of vitamin D3 and [...] Read more.
Using alternative feed ingredients in pig diets can lead to deoxynivalenol (DON) contamination. DON has been shown to induce anorexia, inflammation, and—more recently—alterations in the vitamin D, calcium, and phosphorus metabolisms. Adding vitamin D supplementation in the form of vitamin D3 and 25-OH-D3 to the feed could modify the effects of DON in piglets. In this study, vitamin D3 or 25-OH-D3 supplementation was used in a control or DON-contaminated treatment. A repetitive exposure over 21 days to DON in the piglets led to disruptions in the vitamin D, calcium, and phosphorus metabolisms, resulting in a decreased growth performance, increased bone mineralization, and the downregulation of genes related to calcium and to phosphorus intestinal and renal absorption. The DON challenge also decreased blood concentrations of 25-OH-D3, 1,25-(OH)2-D3, and phosphate. The DON contamination likely decreased the piglets’ vitamin D status indirectly by modifying the calcium metabolism response. Vitamin D supplementations did not restore vitamin D status or bone mineralization. After a lipopolysaccharide-induced inflammatory stimulation, feeding a 25-OH-D3 supplementation increased 25-OH-D3 concentration and 1,25-(OH)2-D3 regulations during the DON challenge. DON contamination likely induced a Ca afflux by altering the intestinal barrier, which resulted in hypercalcemia and hypovitaminosis D. The vitamin D supplementation could increase the calcitriol production to face the combined LPS and DON challenge. Full article
(This article belongs to the Special Issue Effects of Mycotoxins on Animals)
Show Figures

Figure 1

17 pages, 5205 KiB  
Article
Glycyrrhizic Acid and Compound Probiotics Supplementation Alters the Intestinal Transcriptome and Microbiome of Weaned Piglets Exposed to Deoxynivalenol
by Xiaoxiang Xu, Juan Chang, Ping Wang, Chaoqi Liu, Mengjie Liu, Ting Zhou, Qingqiang Yin and Guorong Yan
Toxins 2022, 14(12), 856; https://doi.org/10.3390/toxins14120856 - 4 Dec 2022
Cited by 5 | Viewed by 2301
Abstract
Deoxynivalenol (DON) is a widespread mycotoxin that affects the intestinal health of animals and humans. In the present study, we performed RNA-sequencing and 16S rRNA sequencing in piglets after DON and glycyrrhizic acid and compound probiotics (GAP) supplementation to determine the changes in [...] Read more.
Deoxynivalenol (DON) is a widespread mycotoxin that affects the intestinal health of animals and humans. In the present study, we performed RNA-sequencing and 16S rRNA sequencing in piglets after DON and glycyrrhizic acid and compound probiotics (GAP) supplementation to determine the changes in intestinal transcriptome and microbiota. Transcriptome results indicated that DON exposure altered intestinal gene expression involved in nutrient transport and metabolism. Genes related to lipid metabolism, such as PLIN1, PLIN4, ADIPOQ, and FABP4 in the intestine, were significantly decreased by DON exposure, while their expressions were significantly increased after GAP supplementation. KEGG enrichment analysis showed that GAP supplementation promoted intestinal digestion and absorption of proteins, fats, vitamins, and other nutrients. Results of gut microbiota composition showed that GAP supplementation significantly improved the diversity of gut microbiota. DON exposure significantly increased Proteobacteria, Actinobacteria, and Bacillus abundances and decreased Firmicutes, Lactobacillus, and Streptococcus abundances; however, dietary supplementation with GAP observably recovered their abundances to normal. In addition, predictive functions by PICRUSt analysis showed that DON exposure decreased lipid metabolism, whereas GAP supplementation increased immune system. This result demonstrated that dietary exposure to DON altered the intestinal gene expressions related to nutrient metabolism and induced disturbances of intestinal microbiota, while supplementing GAP to DON-contaminated diets could improve intestinal health for piglets. Full article
(This article belongs to the Special Issue Effects of Mycotoxins on Animals)
Show Figures

Figure 1

14 pages, 3877 KiB  
Article
Aflatoxin B1 Exposure in Sheep: Insights into Hepatotoxicity Based on Oxidative Stress, Inflammatory Injury, Apoptosis, and Gut Microbiota Analysis
by Yuzhen Sui, Ying Lu, Shoujun Zuo, Haidong Wang, Xiaokun Bian, Guizhen Chen, Shucheng Huang, Hongyu Dai, Fang Liu and Haiju Dong
Toxins 2022, 14(12), 840; https://doi.org/10.3390/toxins14120840 - 1 Dec 2022
Cited by 6 | Viewed by 2617
Abstract
The widespread fungal toxin Aflatoxin B1 (AFB1) is an inevitable pollutant affecting the health of humans, poultry, and livestock. Although studies indicate that AFB1 is hepatotoxic, there are few studies on AFB1-induced hepatotoxicity in sheep. Thus, this [...] Read more.
The widespread fungal toxin Aflatoxin B1 (AFB1) is an inevitable pollutant affecting the health of humans, poultry, and livestock. Although studies indicate that AFB1 is hepatotoxic, there are few studies on AFB1-induced hepatotoxicity in sheep. Thus, this study examined how AFB1 affected sheep liver function 24 h after the animals received 1 mg/kg bw of AFB1 orally (dissolved in 20 mL, 4% v/v ethanol). The acute AFB1 poisoning caused histopathological injuries to the liver and increased total bilirubin (TBIL) and alkaline phosphatase (AKP) levels. AFB1 also markedly elevated the levels of the pro-inflammatory cytokines TNF-α and IL-6 while considerably reducing the expression of antioxidation-related genes (SOD-1 and SOD-2) and the anti-inflammatory gene IL-10 in the liver. Additionally, it caused apoptosis by dramatically altering the expression of genes associated with apoptosis including Bax, Caspase-3, and Bcl-2/Bax. Notably, AFB1 exposure altered the gut microbiota composition, mainly manifested by BF311 spp. and Alistipes spp. abundance, which are associated with liver injury. In conclusion, AFB1 can cause liver injury and liver dysfunction in sheep via oxidative stress, inflammation, apoptosis, and gut-microbiota disturbance. Full article
(This article belongs to the Special Issue Effects of Mycotoxins on Animals)
Show Figures

Graphical abstract

15 pages, 3721 KiB  
Article
Zearalenone Promotes Uterine Development of Weaned Gilts by Interfering with Serum Hormones and Up-Regulating Expression of Estrogen and Progesterone Receptors
by Tingting Song, Xuemei Zhou, Xiangming Ma, Yanping Jiang, Weiren Yang, Faxiao Liu, Mei Liu, Libo Huang and Shuzhen Jiang
Toxins 2022, 14(11), 732; https://doi.org/10.3390/toxins14110732 - 26 Oct 2022
Cited by 1 | Viewed by 2052
Abstract
In this study, we aimed to assess the effect of diet ZEA on serum hormones, the location and expression of estrogen receptor ERα/β and progesterone receptor (PR) of the uterus in weaned piglets and to reveal the mechanism underneath. A total of 40 [...] Read more.
In this study, we aimed to assess the effect of diet ZEA on serum hormones, the location and expression of estrogen receptor ERα/β and progesterone receptor (PR) of the uterus in weaned piglets and to reveal the mechanism underneath. A total of 40 healthy weaned gilts were randomly allocated to basal diet supplemented with 0 (Control), 0.5 (ZEA0.5), 1.0 (ZEA1.0) and 1.5 (ZEA1.5) mg ZEA/kg and fed individually for 35 days. Meanwhile, the porcine endometrial epithelial cells (PECs) were incubated for 24 h with ZEA at 0 (Control), 5 (ZEA5), 20 (ZEA20) and 80 (ZEA80) μmol/L, respectively. The results showed that nutrient apparent digestibility (CP and GE), nutrient apparent availability (ME/GE, BV and NPU), the uterine immunoreactive integrated optic density (IOD), relative mRNA and protein expression of ER-α, ER-β and PR and the relative mRNA and protein expression of ER-α and ER-β in PECs all increased linearly (p < 0.05) with ZEA. Collectively, ZEA can interfere with the secretion of some reproductive hormones in the serum and promote the expression of estrogen/progesterone receptors in the uterus and PECs. All these indicate that ZEA may promote the development of the uterus in weaned gilts through estrogen receptor pathway. Full article
(This article belongs to the Special Issue Effects of Mycotoxins on Animals)
Show Figures

Figure 1

17 pages, 2711 KiB  
Article
Quantitative Proteomic Analysis of Zearalenone-Induced Intestinal Damage in Weaned Piglets
by Lulu Ma, Yanping Jiang, Fuguang Lu, Shujing Wang, Mei Liu, Faxiao Liu, Libo Huang, Yang Li, Ning Jiao, Shuzhen Jiang, Xuejun Yuan and Weiren Yang
Toxins 2022, 14(10), 702; https://doi.org/10.3390/toxins14100702 - 13 Oct 2022
Cited by 12 | Viewed by 2530
Abstract
Zearalenone (ZEN), also known as the F-2 toxin, is a common contaminant in cereal crops and livestock products. This experiment aimed to reveal the changes in the proteomics of ZEN-induced intestinal damage in weaned piglets by tandem mass spectrometry tags. Sixteen weaned piglets [...] Read more.
Zearalenone (ZEN), also known as the F-2 toxin, is a common contaminant in cereal crops and livestock products. This experiment aimed to reveal the changes in the proteomics of ZEN-induced intestinal damage in weaned piglets by tandem mass spectrometry tags. Sixteen weaned piglets either received a basal diet or a basal diet supplemented with 3.0 mg/kg ZEN in a 32 d study. The results showed that the serum levels of ZEN, α-zearalenol, and β-zearalenol were increased in weaned piglets exposed to ZEN (p < 0.05). Zearalenone exposure reduced apparent nutrient digestibility, increased intestinal permeability, and caused intestinal damage in weaned piglets. Meanwhile, a total of 174 differential proteins (DEPs) were identified between control and ZEN groups, with 60 up-regulated DEPs and 114 down-regulated DEPs (FC > 1.20 or <0.83, p < 0.05). Gene ontology analysis revealed that DEPs were mainly involved in substance transport and metabolism, gene expression, inflammatory, and oxidative stress. The Kyoto Encyclopedia of Genes and Genomes analysis revealed that DEPs were significantly enriched in 25 signaling pathways (p < 0.05), most of which were related to inflammation and amino acid metabolism. Our study provides valuable clues to elucidate the possible mechanism of ZEN-induced intestinal injury. Full article
(This article belongs to the Special Issue Effects of Mycotoxins on Animals)
Show Figures

Figure 1

20 pages, 2304 KiB  
Article
Quantitative Proteomic Analysis of Zearalenone Exposure on Uterine Development in Weaned Gilts
by Xinglin Liu, Zengchun Wang, Yanping Jiang, Libo Huang, Xuejun Yuan, Yang Li, Ning Jiao, Weiren Yang and Shuzhen Jiang
Toxins 2022, 14(10), 692; https://doi.org/10.3390/toxins14100692 - 9 Oct 2022
Cited by 2 | Viewed by 2209
Abstract
The aim of this study was to explore the effect of zearalenone (ZEA) exposure on uterine development in weaned gilts by quantitative proteome analysis with tandem mass spectrometry tags (TMT). A total of 16 healthy weaned gilts were randomly divided into control (basal [...] Read more.
The aim of this study was to explore the effect of zearalenone (ZEA) exposure on uterine development in weaned gilts by quantitative proteome analysis with tandem mass spectrometry tags (TMT). A total of 16 healthy weaned gilts were randomly divided into control (basal diet) and ZEA3.0 treatments groups (basal diet supplemented with 3.0 mg/kg ZEA). Results showed that vulva size and uterine development index were increased (p < 0.05), whereas serum follicle stimulation hormone, luteinizing hormone and gonadotropin-releasing hormone were decreased in gilts fed the ZEA diet (p < 0.05). ZEA, α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL) were detected in the uteri of gilts fed a 3.0 mg/kg ZEA diet (p < 0.05). The relative protein expression levels of creatine kinase M-type (CKM), atriopeptidase (MME) and myeloperoxidase (MPO) were up-regulated (p < 0.05), whereas aldehyde dehydrogenase 1 family member (ALDH1A2), secretogranin-1 (CHGB) and SURP and G-patch domain containing 1 (SUGP1) were down-regulated (p < 0.05) in the ZEA3.0 group by western blot, which indicated that the proteomics data were dependable. In addition, the functions of differentially expressed proteins (DEPs) mainly involved the cellular process, biological regulation and metabolic process in the biological process category. Some important signaling pathways were changed in the ZEA3.0 group, such as extracellular matrix (ECM)-receptor interaction, focal adhesion and the phosphoinositide 3-kinase–protein kinase B (PI3K-AKT) signaling pathway (p < 0.01). This study sheds new light on the molecular mechanism of ZEA in the uterine development of gilts. Full article
(This article belongs to the Special Issue Effects of Mycotoxins on Animals)
Show Figures

Figure 1

Back to TopTop