Natural Toxins Detected via Different Methods

A special issue of Toxins (ISSN 2072-6651).

Deadline for manuscript submissions: closed (30 September 2024) | Viewed by 1400

Special Issue Editors

Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
Interests: toxin detection; immunoassay; testing technology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Beijing 100850, China
Interests: toxin detection; toxicokinetics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Low doses of toxins can cause the poisoning or death of humans and animals. They are often doped in food processing, water, and other environments, and they also cause extremely hazardous events, which have become a worldwide public safety issue. Challenges of toxin detection include high sensitivity (due to the lethality of low-dose toxins) and the simple quick operation that prevents non-professional operators being harmed by toxins. At present, many toxins lack specific antigens and antibodies, and there is no effective clinical detection method. This Special Issue, Natural Toxins Detected via Different Methods, aims to provide different methods for the detection of natural toxins. It includes advanced immunoassays and the nucleic acid detection of toxin, the on-site and clinical detection of toxins, new detection technologies based on nano materials, etc. We hope that researchers will share their valuable research on the detection of toxins to open up unexplored areas.

Dr. Rui Xiao
Prof. Dr. Lei Guo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a double-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxins is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • toxin
  • detection
  • immunoassay
  • nucleic acid
  • nanomaterials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 5697 KiB  
Article
A Glycoprotein-Based Surface-Enhanced Raman Spectroscopy–Lateral Flow Assay Method for Abrin and Ricin Detection
by Lan Xiao, Li Luo, Jia Liu, Luyao Liu, Han Han, Rui Xiao, Lei Guo, Jianwei Xie and Li Tang
Toxins 2024, 16(7), 312; https://doi.org/10.3390/toxins16070312 - 11 Jul 2024
Viewed by 991
Abstract
Abrin and ricin, both type II ribosome-inactivating proteins, are toxins of significant concern and are under international restriction by the Chemical Weapons Convention and the Biological and Toxin Weapons Convention. The development of a rapid and sensitive detection method for these toxins is [...] Read more.
Abrin and ricin, both type II ribosome-inactivating proteins, are toxins of significant concern and are under international restriction by the Chemical Weapons Convention and the Biological and Toxin Weapons Convention. The development of a rapid and sensitive detection method for these toxins is of the utmost importance for the first emergency response. Emerging rapid detection techniques, such as surface-enhanced Raman spectroscopy (SERS) and lateral flow assay (LFA), have garnered attention due to their high sensitivity, good selectivity, ease of operation, low cost, and disposability. In this work, we generated stable and high-affinity nanotags, via an efficient freezing method, to serve as the capture module for SERS-LFA. We then constructed a sandwich-style lateral flow test strip using a pair of glycoproteins, asialofetuin and concanavalin A, as the core affinity recognition molecules, capable of trace measurement for both abrin and ricin. The limit of detection for abrin and ricin was 0.1 and 0.3 ng/mL, respectively. This method was applied to analyze eight spiked white powder samples, one juice sample, and three actual botanic samples, aligning well with cytotoxicity assay outcomes. It demonstrated good inter-batch and intra-batch reproducibility among the test strips, and the detection could be completed within 15 min, indicating the suitability of this SERS-LFA method for the on-site rapid detection of abrin and ricin toxins. Full article
(This article belongs to the Special Issue Natural Toxins Detected via Different Methods)
Show Figures

Figure 1

Back to TopTop