Immunology and Immunopathology of Poultry and Livestock Infectious Diseases

A special issue of Vaccines (ISSN 2076-393X). This special issue belongs to the section "Veterinary Vaccines".

Deadline for manuscript submissions: closed (15 October 2020) | Viewed by 91648

Special Issue Editor


E-Mail Website
Guest Editor
Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
Interests: avian viral immunology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Global poultry and livestock productions are multibillion-dollar industries. Although there are a number of effective disease-prevention strategies are in place on poultry and livestock operations, infectious diseases caused by bacteria, viruses and parasites are continue to be major constraints for the sustainability of the poultry and livestock production globally. Although, vaccines are used widely for the prevention of these infectious diseases, failure of vaccination protocols is also common. This suggests that comprehensive understanding of the immune responses to these vaccines are critical as has been the host response mounted against these infectious agents. Some of these infections also lead to immunopathology.

With a view of the economic and public health importance of poultry and livestock infectious diseases, in this Special Issue we will focus on the most recent research progress on vaccine-mediated immune responses, host responses mounted against infections and immunopathology relevant to these hosts.

Prof. Dr. Faizal Careem
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Vaccines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Poultry
  • livestock
  • vaccine
  • adaptive immune response
  • innate host response
  • immunopthology
  • viral infection
  • bacterial infection
  • parasitic infection
  • fungal infection

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (20 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 906 KiB  
Article
Distinct African Swine Fever Virus Shedding in Wild Boar Infected with Virulent and Attenuated Isolates
by Aleksandra Kosowska, Estefanía Cadenas-Fernández, Sandra Barroso, Jose M. Sánchez-Vizcaíno and Jose A. Barasona
Vaccines 2020, 8(4), 767; https://doi.org/10.3390/vaccines8040767 - 16 Dec 2020
Cited by 13 | Viewed by 4863
Abstract
Since the reappearance of African swine fever virus (ASFV), the disease has spread in an unprecedented animal pandemic in Eurasia. ASF currently constitutes the greatest global problem for the swine industry. The wild boar (Sus scrofa) in which the pathogen has [...] Read more.
Since the reappearance of African swine fever virus (ASFV), the disease has spread in an unprecedented animal pandemic in Eurasia. ASF currently constitutes the greatest global problem for the swine industry. The wild boar (Sus scrofa) in which the pathogen has established wild self-sustaining cycles, is a key reservoir for ASFV, signifying that there is an urgent need to develop an effective vaccine against this virus. Current scientific debate addresses whether live attenuated vaccines (LAVs), which have shown promising results in cross-protection of susceptible hosts, may be feasible for vaccinations carried out owing to safety concerns. The objective of this study was, therefore, to compare the ASFV shedding in wild boar infected with virulent and attenuated (LAV) isolates. Different shedding routes (oral fluid and feces) and viremia rates were characterized in wild boar inoculated with Lv17/WB/Rie1 isolate (n = 12) when compared to those inoculated with the virulent Armenia07 isolate (n = 17). In general, fewer animals infected with the Lv17/WB/Rie1 isolate tested positive for ASFV in blood, oral fluid, and feces in comparison to animals infected with the virulent Armenia07 isolate. The shedding patterns were characterized in order to understand the transmission dynamics. This knowledge will help evaluate the shedding of new LAV candidates in wild boar populations, including the comparison with gene deletion mutant LAVs, whose current results are promising. Full article
Show Figures

Figure 1

17 pages, 9461 KiB  
Article
Phase I and II Clinical Trial Comparing the LBSap, Leishmune®, and Leish-Tec® Vaccines against Canine Visceral Leishmaniasis
by Rodrigo Dian de Oliveira Aguiar-Soares, Bruno Mendes Roatt, Fernando Augusto Siqueira Mathias, Levi Eduardo Soares Reis, Jamille Mirelle de Oliveira Cardoso, Rory Cristiane Fortes de Brito, Henrique Gama Ker, Rodrigo Corrêa-Oliveira, Rodolfo Cordeiro Giunchetti and Alexandre Barbosa Reis
Vaccines 2020, 8(4), 690; https://doi.org/10.3390/vaccines8040690 - 17 Nov 2020
Cited by 9 | Viewed by 3769
Abstract
In this study, we performed a phase I and II clinical trial in dogs to evaluate the toxicity and immunogenicity of LBSap-vaccine prototype, in comparison to Leishmune® and Leish-Tec® vaccines. Twenty-eight dogs were classified in four groups: (i) control group received [...] Read more.
In this study, we performed a phase I and II clinical trial in dogs to evaluate the toxicity and immunogenicity of LBSap-vaccine prototype, in comparison to Leishmune® and Leish-Tec® vaccines. Twenty-eight dogs were classified in four groups: (i) control group received 1 mL of sterile 0.9% saline solution; (ii) LBSap group received 600 μg of Leishmania braziliensis promastigotes protein and 1 mg of saponin adjuvant; (iii) Leishmune®; and (iv) Leish-Tec®. The safety and toxicity of the vaccines were measured before and after three immunizations by clinical, biochemical, and hematological parameters. The clinical examinations revealed that some dogs of LBSap and Leishmune® groups presented changes at the site of vaccination inoculum, such as nodules, mild edema, and local pain, which were transient and disappeared seventy-two hours after vaccination, but these results indicate that adverse changes caused by the immunizations are tolerable. The immunogenicity results demonstrate an increase of B lymphocytes CD21+ regarding the Leishmune® group and monocytes CD14+ concerning LBSap and Leishmune® groups. In the in vitro analyses, an increase in lymphoproliferative activity in LBSap and Leishmune® groups was observed, with an increase of antigen-specific CD4+ and CD8+ T lymphocytes in the LBSap group. A second approach of in vitro assays aimed at evaluating the percentage of antigen-specific CD4+ and CD8+ T lymphocytes producers of IFN-γ and IL-4, where an increase in both IFN-γ producing subpopulations in the LBSap group was observed, also showed an increase in IFN-γ producers in CD8+ lymphocytes in the Leish-Tec® group. Our data regarding immunogenicity indicate that the vaccination process, especially with the LBSap vaccine, generated a protective immune response compatible with L. infantum parasite control. Based on the foregoing, the LBSap vaccine would be suitable for further studies of phase III clinical trial in endemic areas with high prevalence and incidence of canine visceral leishmaniasis (VL) cases. Full article
Show Figures

Figure 1

17 pages, 5177 KiB  
Article
Toll-Like Receptor 21 of Chicken and Duck Recognize a Broad Array of Immunostimulatory CpG-oligodeoxynucleotide Sequences
by Yu-Chen Chuang, Jen-Chih Tseng, Jing-Xing Yang, Yi-Ling Liu, Da-Wei Yeh, Chao-Yang Lai, Guann-Yi Yu, Li-Chung Hsu, Chun-Ming Huang and Tsung-Hsien Chuang
Vaccines 2020, 8(4), 639; https://doi.org/10.3390/vaccines8040639 - 2 Nov 2020
Cited by 10 | Viewed by 3452
Abstract
CpG-oligodeoxynucleotides (CpG-ODNs) mimicking the function of microbial CpG-dideoxynucleotides containing DNA (CpG-DNA) are potent immune stimuli. The immunostimulatory activity and the species-specific activities of a CpG-ODN depend on its nucleotide sequence properties, including CpG-hexamer motif types, spacing between motifs, nucleotide sequence, and length. Toll-like [...] Read more.
CpG-oligodeoxynucleotides (CpG-ODNs) mimicking the function of microbial CpG-dideoxynucleotides containing DNA (CpG-DNA) are potent immune stimuli. The immunostimulatory activity and the species-specific activities of a CpG-ODN depend on its nucleotide sequence properties, including CpG-hexamer motif types, spacing between motifs, nucleotide sequence, and length. Toll-like receptor (TLR) 9 is the cellular receptor for CpG-ODNs in mammalian species, while TLR21 is the receptor in avian species. Mammalian cells lack TLR21, and avian cells lack TLR9; however, both TLRs are expressed in fish cells. While nucleotide sequence properties required for a CpG-ODN to strongly activate mammalian TLR9 and its species-specific activities to different mammalian TLR9s are better studied, CpG-ODN activation of TLR21 is not yet well investigated. Here we characterized chicken and duck TLR21s and investigated their activation by CpG-ODNs. Chicken and duck TLR21s contain 972 and 976 amino acid residues, respectively, and differ from TLR9s as they do not have an undefined region in their ectodomain. Cell-based TLR21 activation assays were established to investigate TLR21 activation by different CpG-ODNs. Unlike grouper TLR21, which was preferentially activated by CpG-ODN with a GTCGTT hexamer motif, chicken and duck TLR21s do not distinguish among different CpG-hexamer motifs. Additionally, these two poultry TLR21s were activated by CpG-ODNs with lengths ranging from 15 to 31 nucleotides and with different spacing between CpG-hexamer motifs. These suggested that compared to mammalian TLR9 and grouper TLR21, chicken and duck TLR21s have a broad CpG-ODN sequence recognition profile. Thus, they could also recognize a wide array of DNA-associated molecular patterns from microbes. Moreover, CpG-ODNs are being investigated as antimicrobial agents and as vaccine adjuvants for different species. This study revealed that there are more optimized CpG-ODNs that can be used in poultry farming as anti-infection agents compared to CpG-ODN choices available for other species. Full article
Show Figures

Figure 1

18 pages, 11762 KiB  
Article
Immunogenicity and Protective Efficacy of a Non-Living Anthrax Vaccine versus a Live Spore Vaccine with Simultaneous Penicillin-G Treatment in Cattle
by Solomon Jauro, Okechukwu C. Ndumnego, Charlotte Ellis, Angela Buys, Wolfgang Beyer and Henriette van Heerden
Vaccines 2020, 8(4), 595; https://doi.org/10.3390/vaccines8040595 - 9 Oct 2020
Cited by 2 | Viewed by 5015
Abstract
Sterne live spore vaccine (SLSV) is the current veterinary anthrax vaccine of choice. Unlike the non-living anthrax vaccine (NLAV) prototype, SLSV is incompatible with concurrent antibiotics use in an anthrax outbreak scenario. The NLAV candidates used in this study include a crude recombinant [...] Read more.
Sterne live spore vaccine (SLSV) is the current veterinary anthrax vaccine of choice. Unlike the non-living anthrax vaccine (NLAV) prototype, SLSV is incompatible with concurrent antibiotics use in an anthrax outbreak scenario. The NLAV candidates used in this study include a crude recombinant protective antigen (CrPA) and a purified recombinant protective antigen (PrPA) complemented by formalin-inactivated spores and Emulsigen-D®/Alhydrogel® adjuvants. Cattle were vaccinated twice (week 0 and 3) with NLAVs plus penicillin-G (Pen-G) treatment and compared to cattle vaccinated twice with SLSV alone and with Pen-G treatment. The immunogenicity was assessed using ELISA against rPA and FIS, toxin neutralisation assay (TNA) and opsonophagocytic assay. The protection was evaluated using an in vivo passive immunisation mouse model. The anti-rPA IgG titres for NLAVs plus Pen-G and SLSV without Pen-G treatment showed a significant increase, whereas the titres for SLSV plus Pen-G were insignificant compared to pre-vaccination values. A similar trend was measured for IgM, IgG1, and IgG2 and TNA titres (NT50) showed similar trends to anti-rPA titres across all vaccine groups. The anti-FIS IgG and IgM titres increased significantly for all vaccination groups at week 3 and 5 when compared to week 0. The spore opsonising capacity increased significantly in the NLAV vaccinated groups including Pen-G treatment and the SLSV without Pen-G but much less in the SLSV group with Pen-G treatment. Passive immunization of A/J mice challenged with a lethal dose of 34F2 spores indicated significant protective capacity of antibodies raised in the SLSV and the PrPA + FIS + adjuvants vaccinated and Pen-G treated groups but not for the NLAV with the CrPA + FIS + adjuvants and the SLSV vaccinated and Pen-G treated group. Our findings indicate that the PrPA + FIS + Emulsigen-D®/Alhydrogel® vaccine candidate may provide the same level of antibody responses and protective capacity as the SLSV. Advantageously, it can be used concurrently with Penicillin-G in an outbreak situation and as prophylactic treatment in feedlots and valuable breeding stocks. Full article
Show Figures

Graphical abstract

18 pages, 3085 KiB  
Article
Immunization with Plant-Derived Multimeric H5 Hemagglutinins Protect Chicken against Highly Pathogenic Avian Influenza Virus H5N1
by Hoang Trong Phan, Van Thi Pham, Thuong Thi Ho, Ngoc Bich Pham, Ha Hoang Chu, Trang Huyen Vu, Elsayed M. Abdelwhab, David Scheibner, Thomas C. Mettenleiter, Tran Xuan Hanh, Armin Meister, Ulrike Gresch and Udo Conrad
Vaccines 2020, 8(4), 593; https://doi.org/10.3390/vaccines8040593 - 9 Oct 2020
Cited by 25 | Viewed by 4180
Abstract
Since 2003, H5N1 highly pathogenic avian influenza viruses (HPAIV) have not only caused outbreaks in poultry but were also transmitted to humans with high mortality rates. Vaccination is an efficient and economical means of increasing immunity against infections to decrease the shedding of [...] Read more.
Since 2003, H5N1 highly pathogenic avian influenza viruses (HPAIV) have not only caused outbreaks in poultry but were also transmitted to humans with high mortality rates. Vaccination is an efficient and economical means of increasing immunity against infections to decrease the shedding of infectious agents in immunized animals and to reduce the probability of further infections. Subunit vaccines from plants are the focus of modern vaccine developments. In this study, plant-made hemagglutinin (H5) trimers were purified from transiently transformed N. benthamiana plants. All chickens immunized with purified H5 trimers were fully protected against the severe HPAIV H5N1 challenge. We further developed a proof-of-principle approach by using disulfide bonds, homoantiparallel peptides or homodimer proteins to combine H5 trimers leading to production of H5 oligomers. Mice vaccinated with crude leaf extracts containing H5 oligomers induced neutralizing antibodies better than those induced by crude leaf extracts containing trimers. As a major result, eleven out of twelve chickens (92%) immunized with adjuvanted H5 oligomer crude extracts were protected from lethal disease while nine out of twelve chickens (75%) vaccinated with adjuvanted H5 trimer crude extracts survived. The solid protective immune response achieved by immunization with crude extracts and the stability of the oligomers form the basis for the development of inexpensive protective veterinary vaccines. Full article
Show Figures

Figure 1

13 pages, 1620 KiB  
Article
A Comparison of Intramuscular and Subcutaneous Administration of LigA Subunit Vaccine Adjuvanted with Neutral Liposomal Formulation Containing Monophosphoryl Lipid A and QS21
by Teerasit Techawiwattanaboon, Christophe Barnier-Quer, Tanapat Palaga, Alain Jacquet, Nicolas Collin, Noppadon Sangjun, Pat Komanee and Kanitha Patarakul
Vaccines 2020, 8(3), 494; https://doi.org/10.3390/vaccines8030494 - 1 Sep 2020
Cited by 14 | Viewed by 4057
Abstract
Leptospirosis vaccines with higher potency and reduced adverse effects are needed for human use. The carboxyl terminal domain of leptospiral immunoglobulin like protein A (LigAc) is currently the most promising candidate antigen for leptospirosis subunit vaccine. However, LigAc-based vaccines were unable to confer [...] Read more.
Leptospirosis vaccines with higher potency and reduced adverse effects are needed for human use. The carboxyl terminal domain of leptospiral immunoglobulin like protein A (LigAc) is currently the most promising candidate antigen for leptospirosis subunit vaccine. However, LigAc-based vaccines were unable to confer sterilizing immunity against Leptospira infection in animal models. Several factors including antigen properties, adjuvant, delivery system, and administration route need optimization to maximize vaccine efficacy. Our previous report demonstrated protective effects of the recombinant LigAc (rLigAc) formulated with liposome-based adjuvant, called LMQ (neutral liposome combined with monophosphoryl lipid A and Quillaja saponaria fraction 21) in hamsters. This study aimed to evaluate the impact of two commonly used administration routes, intramuscular (IM) and subcutaneous (SC), on immunogenicity and protective efficacy of rLigAc-LMQ administrated three times at 2-week interval. Two IM vaccinations triggered significantly higher levels of total anti-rLigAc IgG than two SC injections. However, comparable IgG titers and IgG2/IgG1 ratio was observed for both routes after the third immunization. The route of vaccine administration did not influence the survival rate (60%) and renal colonization against lethal Leptospira challenge. Importantly, the kidneys of IM group showed no pathological lesions while the SC group showed mild damage. In conclusion, IM vaccination with rLigAc-LMQ not only elicited faster antibody production but also protected from kidney damage following leptospiral infection better than SC immunization. However, both tested routes did not influence protective efficacy in terms of survival rate and the level of renal colonization. Full article
Show Figures

Figure 1

17 pages, 2764 KiB  
Article
Interferon Inducing Porcine Reproductive and Respiratory Syndrome Virus Vaccine Candidate Protected Piglets from HP-PRRSV Challenge and Evoke a Higher Level of Neutralizing Antibodies Response
by Yafei Li, Junhui Li, Sun He, Wei Zhang, Jian Cao, Xiaomei Pan, Huifen Tang, En-Min Zhou, Chunyan Wu and Yuchen Nan
Vaccines 2020, 8(3), 490; https://doi.org/10.3390/vaccines8030490 - 31 Aug 2020
Cited by 5 | Viewed by 3690
Abstract
Although widespread administration of attenuated porcine reproductive and respiratory syndrome virus (PRRSV) vaccines has been implemented since they first became commercially available two decades ago, PRRSV infection prevalence in swine herds remains high. The limited success of PRRSV vaccines is partly due to [...] Read more.
Although widespread administration of attenuated porcine reproductive and respiratory syndrome virus (PRRSV) vaccines has been implemented since they first became commercially available two decades ago, PRRSV infection prevalence in swine herds remains high. The limited success of PRRSV vaccines is partly due to the well-established fact that a given vaccine strain confers only partial or no protection against heterologous strains. In our past work, A2MC2-P90, a novel PRRSV vaccine candidate that induced a type I IFNs response in vitro, conferred complete protection against challenge with genetically heterologous PRRSV strains. Here we assessed the ability of the PRRSV vaccine candidate A2MC2-P90 to protect piglets against the HP-PRRSV challenge and compared its efficacy to that of a licensed HP-PRRSV-specific vaccine (TJM-F92) assessed in parallel. A2MC2-P90 provided vaccinated piglets with 100% protection from a lethal challenge with extremely virulent HP-PRRSV-XJA1, while 100% mortality was observed for unvaccinated piglets by day 21 post-challenge. Notably, comparison of partial sequence (GP5) of XJA1 to A2MC2-P90 suggested there was only 88.7% homology. When comparing post-HP-PRRSV challenge responses between piglets administered A2AMC2-P90 versus those immunized with licensed vaccine TJM-F92, A2MC2-P90-vaccinated piglets rapidly developed a stronger protective humoral immune response, as evidenced by much higher titers of neutralizing antibodies, more rapid clearance of viremia and less nasal virus shedding. In conclusion, our data suggest that this novel vaccine candidate A2MC2-P90 has improved protection spectrum against heterologous HP-PRRSV strains. Full article
Show Figures

Figure 1

21 pages, 3115 KiB  
Article
Field Study on the Immunological Response and Protective Effect of a Licensed Autogenous Vaccine to Control Streptococcus suis Infections in Post-Weaned Piglets
by Lorelei Corsaut, Marty Misener, Paisley Canning, Guy Beauchamp, Marcelo Gottschalk and Mariela Segura
Vaccines 2020, 8(3), 384; https://doi.org/10.3390/vaccines8030384 - 14 Jul 2020
Cited by 14 | Viewed by 4619
Abstract
Streptococcus suis is one of the most important bacterial pathogens in weaned piglets and responsible for serious economic losses to the swine industry. Currently, mostly autogenous vaccines composed of killed bacteria (bacterins) are available. However, immunological and protective data from field studies are [...] Read more.
Streptococcus suis is one of the most important bacterial pathogens in weaned piglets and responsible for serious economic losses to the swine industry. Currently, mostly autogenous vaccines composed of killed bacteria (bacterins) are available. However, immunological and protective data from field studies are missing. We report for the first time a comparative field study on the immunological response induced by an autogenous vaccine applied to either piglets or sows in a farm with recurrent S. suis problems. (I) Piglets from non-vaccinated sows received an autogenous bacterin during the first week and at three weeks of age. (II) Sows received the vaccine at five and three weeks pre-farrowing and piglets were non-vaccinated. Levels, isotype profile and opsonophagocytosis capacity of the serum antibodies induced by vaccination were evaluated. Vaccination of piglets failed to induce an active immune response. Vaccination of sows induced a significant increase in anti-S. suis antibodies, mainly composed of IgG1. However, isotype switching was modulated by the S. suis serotype included in the vaccine formulation. Despite this antibody increase in vaccinated sows, transfer of maternal immunity to piglets was not different from the control group (i.e., piglets from non-vaccinated sows). Notably, levels of maternal antibodies in piglets were already very high with marked opsonophagocytosis capacity at one week of age, independently of the vaccination program. However, their levels decreased by three weeks of age, indicating possible absence of antibodies in the post-weaning high-risk period. These observations correlated with lack of clinical protection in the farm. Overall, a piglet or a sow vaccination program herein mostly failed to induce lasting protection in nursery piglets. An improvement of vaccine formulation or an optimized program may be required. Full article
Show Figures

Figure 1

19 pages, 4582 KiB  
Article
Chicken DNA Sensing cGAS-STING Signal Pathway Mediates Broad Spectrum Antiviral Functions
by Shuangjie Li, Jie Yang, Yuanyuan Zhu, Xingyu Ji, Kun Wang, Sen Jiang, Jia Luo, Hui Wang, Wanglong Zheng, Nanhua Chen, Jianqiang Ye, François Meurens and Jianzhong Zhu
Vaccines 2020, 8(3), 369; https://doi.org/10.3390/vaccines8030369 - 9 Jul 2020
Cited by 23 | Viewed by 4602
Abstract
The innate DNA sensing receptors are one family of pattern recognition receptors and play important roles in antiviral infections, especially DNA viral infections. Among the multiple DNA sensors, cGAS has been studied intensively and is most defined in mammals. However, DNA sensors in [...] Read more.
The innate DNA sensing receptors are one family of pattern recognition receptors and play important roles in antiviral infections, especially DNA viral infections. Among the multiple DNA sensors, cGAS has been studied intensively and is most defined in mammals. However, DNA sensors in chickens have not been much studied, and the chicken cGAS is still not fully understood. In this study, we investigated the chicken cGAS-STING signal axis, revealed its synergistic activity, species-specificity, and the signal essential sites in cGAS. Importantly, both cGAS and STING exhibited antiviral effects against DNA viruses, retroviruses, and RNA viruses, suggesting the broad range antiviral functions and the critical roles in chicken innate immunity. Full article
Show Figures

Figure 1

13 pages, 7458 KiB  
Article
Porcine Parvovirus 7: Evolutionary Dynamics and Identification of Epitopes toward Vaccine Design
by Dongliang Wang, Jinhui Mai, Yi Yang and Naidong Wang
Vaccines 2020, 8(3), 359; https://doi.org/10.3390/vaccines8030359 - 5 Jul 2020
Cited by 15 | Viewed by 3378
Abstract
Porcine parvovirus 7 (PPV7) belonging to the genus Chapparvovirus in the family Parvoviridae, has been identified in the USA, Sweden, Poland, China, South Korea and Brazil. Our objective was to determine the phylogeny, estimate the time of origin and evolutionary dynamics of [...] Read more.
Porcine parvovirus 7 (PPV7) belonging to the genus Chapparvovirus in the family Parvoviridae, has been identified in the USA, Sweden, Poland, China, South Korea and Brazil. Our objective was to determine the phylogeny, estimate the time of origin and evolutionary dynamics of PPV7, and use computer-based immune-informatics to assess potential epitopes of its Cap, the main antigenic viral protein, for vaccines or serology. Regarding evolutionary dynamics, PPV7 had 2 major clades, both of which possibly had a common ancestor in 2004. Furthermore, PPV7 strains from China were the most likely ancestral strains. The nucleotide substitution rates of NS1 and Cap genes were 8.01 × 10−4 and 2.19 × 10−3 per site per year, respectively, which were higher than those reported for PPV1-4. The antigenic profiles of PPV7 Cap were revealed and there were indications that PPV7 used antigenic shift to escape from the host’s immune surveillance. Linear B cell epitopes and CD8 T cell epitopes of Cap with good antigenic potential were identified in silico; these conserved B cell epitopes may be candidates for the PPV7 vaccine or for the development of serological diagnostic methods. Full article
Show Figures

Figure 1

15 pages, 3516 KiB  
Article
Cloning and Expression of the Tibetan Pig Interleukin-23 Gene and Its Promotion of Immunity of Pigs to PCV2 Vaccine
by Yongle Xiao, Huan Zhang, Jianlin Chen, Yi Chen, Jinghai Li, Tingyu Song, Guangzhi Zeng, Xiaohui Chen, Xuebin Lü, Pengfei Fang and Rong Gao
Vaccines 2020, 8(2), 250; https://doi.org/10.3390/vaccines8020250 - 26 May 2020
Cited by 7 | Viewed by 3189
Abstract
Vaccines against Porcine circovirus type 2 (PCV2) have been studied intensely and found to be effective in decreasing mortality and improving growth in swine populations. In this study, interleukin-23 (IL-23) gene was cloned from peripheral blood mononuclear cells (PBMCs) of Tibetan pigs and [...] Read more.
Vaccines against Porcine circovirus type 2 (PCV2) have been studied intensely and found to be effective in decreasing mortality and improving growth in swine populations. In this study, interleukin-23 (IL-23) gene was cloned from peripheral blood mononuclear cells (PBMCs) of Tibetan pigs and inserted into a eukaryotic VR1020 expression vector-VRIL23. Coated with chitosan (CS), the VRIL23-CS was intramuscularly injected into 3-week-old piglets with PCV2 vaccine. The blood was collected after vaccination at 0, 1, 2, 4, 8, and 12 weeks, respectively, to detect the immunological changes. The IgG2a and specific PCV2 antibodies were detected using ELISA, and blood CD4+ and CD8+ T cells were quantified by flow cytometry. Quantitative fluorescence PCR was used to evaluate the expression of immune genes. The results indicate that leukocytes, erythrocytes, and CD4+ and CD8+ T cells increased significantly in the blood of VRIL23-CS inoculated piglets in comparison with the control (p < 0.05) and so did the IgG2a and PCV2 antibodies. In addition, the expressions of Toll-like receptor (TLR) 2, TLR7, cluster of differentiation (CD) 45, IL-15, IL-12, signal transducer and activator of transcription (STAT)1, STAT2, STAT3, STAT4, and B-cell lymphoma (Bcl)-2 genes were also obviously higher in the VRIL23-CS inoculated pigs at different time points (p < 0.05). Overall, the results demonstrated that VRIL23-CS can enhance the comprehensive immune responses to PCV2 vaccine in vivo and has the promising potential to be developed into a safe and effective adjuvant to promote the immunity of pig against PCV disease. Full article
Show Figures

Figure 1

21 pages, 878 KiB  
Article
Identifying Cattle Breed-Specific Partner Choice of Transcription Factors during the African Trypanosomiasis Disease Progression Using Bioinformatics Analysis
by Abirami Rajavel, Felix Heinrich, Armin Otto Schmitt and Mehmet Gültas
Vaccines 2020, 8(2), 246; https://doi.org/10.3390/vaccines8020246 - 23 May 2020
Cited by 6 | Viewed by 3931
Abstract
African Animal Trypanosomiasis (AAT) is a disease caused by pathogenic trypanosomes which affects millions of livestock every year causing huge economic losses in agricultural production especially in sub-Saharan Africa. The disease is spread by the tsetse fly which carries the parasite in its [...] Read more.
African Animal Trypanosomiasis (AAT) is a disease caused by pathogenic trypanosomes which affects millions of livestock every year causing huge economic losses in agricultural production especially in sub-Saharan Africa. The disease is spread by the tsetse fly which carries the parasite in its saliva. During the disease progression, the cattle are prominently subjected to anaemia, weight loss, intermittent fever, chills, neuronal degeneration, congestive heart failure, and finally death. According to their different genetic programs governing the level of tolerance to AAT, cattle breeds are classified as either resistant or susceptible. In this study, we focus on the cattle breeds N’Dama and Boran which are known to be resistant and susceptible to trypanosomiasis, respectively. Despite the rich literature on both breeds, the gene regulatory mechanisms of the underlying biological processes for their resistance and susceptibility have not been extensively studied. To address the limited knowledge about the tissue-specific transcription factor (TF) cooperations associated with trypanosomiasis, we investigated gene expression data from these cattle breeds computationally. Consequently, we identified significant cooperative TF pairs (especially D B P P P A R A and D B P T H A P 1 in N’Dama and D B P P A X 8 in Boran liver tissue) which could help understand the underlying AAT tolerance/susceptibility mechanism in both cattle breeds. Full article
Show Figures

Graphical abstract

18 pages, 2282 KiB  
Article
Pustulan Activates Chicken Bone Marrow-Derived Dendritic Cells In Vitro and Promotes Ex Vivo CD4+ T Cell Recall Response to Infectious Bronchitis Virus
by Frederik T. Larsen, Bernt Guldbrandtsen, Dennis Christensen, Jacob Pitcovski, Rikke B. Kjærup and Tina S. Dalgaard
Vaccines 2020, 8(2), 226; https://doi.org/10.3390/vaccines8020226 - 15 May 2020
Cited by 6 | Viewed by 4397
Abstract
Infectious bronchitis virus (IBV) is a highly contagious avian coronavirus. IBV causes substantial worldwide economic losses in the poultry industry. Vaccination with live-attenuated viral vaccines, therefore, are of critical importance. Live-attenuated viral vaccines, however, exhibit the potential for reversion to virulence and recombination [...] Read more.
Infectious bronchitis virus (IBV) is a highly contagious avian coronavirus. IBV causes substantial worldwide economic losses in the poultry industry. Vaccination with live-attenuated viral vaccines, therefore, are of critical importance. Live-attenuated viral vaccines, however, exhibit the potential for reversion to virulence and recombination with virulent field strains. Therefore, alternatives such as subunit vaccines are needed together with the identification of suitable adjuvants, as subunit vaccines are less immunogenic than live-attenuated vaccines. Several glycan-based adjuvants directly targeting mammalian C-type lectin receptors were assessed in vitro using chicken bone marrow-derived dendritic cells (BM-DCs). The β-1-6-glucan, pustulan, induced an up-regulation of MHC class II (MHCII) cell surface expression, potentiated a strong proinflammatory cytokine response, and increased endocytosis in a cation-dependent manner. Ex vivo co-culture of peripheral blood monocytes from IBV-immunised chickens, and BM-DCs pulsed with pustulan-adjuvanted recombinant IBV N protein (rN), induced a strong recall response. Pustulan-adjuvanted rN induced a significantly higher CD4+ blast percentage compared to either rN, pustulan or media. However, the CD8+ and TCRγδ+ blast percentage were significantly lower with pustulan-adjuvanted rN compared to pustulan or media. Thus, pustulan enhanced the efficacy of MHCII antigen presentation, but apparently not the cross-presentation on MHCI. In conclusion, we found an immunopotentiating effect of pustulan in vitro using chicken BM-DCs. Thus, future in vivo studies might show pustulan as a promising glycan-based adjuvant for use in the poultry industry to contain the spread of coronaviridiae as well as of other avian viral pathogens. Full article
Show Figures

Graphical abstract

14 pages, 3020 KiB  
Article
Synthetic Peptides Containing Three Neutralizing Epitopes of Genotype 4 Swine Hepatitis E Virus ORF2 induced Protection against Swine HEV Infection in Rabbit
by Yiyang Chen, Tianxiang Chen, Yuhang Luo, Jie Fan, Meimei Zhang, Qin Zhao, Yuchen Nan, Baoyuan Liu and En-Min Zhou
Vaccines 2020, 8(2), 178; https://doi.org/10.3390/vaccines8020178 - 13 Apr 2020
Cited by 9 | Viewed by 2492
Abstract
Genotype 4 hepatitis E virus (HEV) is a zoonotic pathogen transmitted to humans through food and water. Previously, three genotype 4 swine HEV ORF2 peptides (407EPTV410, 410VKLYTS415, and 458PSRPF462) were identified as epitopes [...] Read more.
Genotype 4 hepatitis E virus (HEV) is a zoonotic pathogen transmitted to humans through food and water. Previously, three genotype 4 swine HEV ORF2 peptides (407EPTV410, 410VKLYTS415, and 458PSRPF462) were identified as epitopes of virus-neutralizing monoclonal antibodies that partially blocked rabbit infection with swine HEV. Here, individual and tandem fused peptides were synthesized, conjugated to keyhole limpet hemocyanin (KLH), then evaluated for immunoprotection of rabbits against swine HEV infection. Forty New Zealand White rabbits were randomly assigned to eight groups; groups 1 thru 5 received three immunizations with EPTV-KLH, VKLYTS-KLH, PSRPF-KLH, EPTVKLYTS-KLH, or EPTVKLYTSPSRPF-KLH, respectively; group 6 received truncated swine HEV ORF2 protein (sp239), and group 7 received phosphate-buffered saline. After an intravenous swine HEV challenge, all group 7 rabbits exhibited viremia and fecal virus shedding by 2–4 weeks post challenge (wpc), seroconversion by 4–9 wpc, elevated alanine aminotransferase (ALT) at 2 wpc, and severe liver lymphocytic venous periphlebitis. Only 1–2 rabbits/group in groups 1–4 exhibited delayed viremia, fecal shedding, seroconversion, increased ALT levels, and slight liver lymphocytic venous periphlebitis; groups 5–6 showed no pathogenic effects. Collectively, these results demonstrate that immunization with a polypeptide containing three genotype 4 HEV ORF2 neutralizing epitopes completely protected rabbits against swine HEV infection. Full article
Show Figures

Figure 1

16 pages, 2697 KiB  
Article
An Antibody Persistent and Protective Two rSsCLP-Based Subunit Cocktail Vaccine against Sarcoptes scabiei in a Rabbit Model
by Nengxing Shen, Wenrui Wei, Yuhang Chen, Yongjun Ren, Lang Xiong, Yuanyuan Tao, Xiaobin Gu, Yue Xie, Xuerong Peng and Guangyou Yang
Vaccines 2020, 8(1), 129; https://doi.org/10.3390/vaccines8010129 - 16 Mar 2020
Cited by 9 | Viewed by 3816
Abstract
Scabies is a highly contagious disease caused by Sarcoptes scabiei which burrows into stratum corneum of host’s skin. In this study, after optimizing vaccination schedule, a vaccination trial is comprised of three test groups of rabbits (n = 10/group) by immunization with [...] Read more.
Scabies is a highly contagious disease caused by Sarcoptes scabiei which burrows into stratum corneum of host’s skin. In this study, after optimizing vaccination schedule, a vaccination trial is comprised of three test groups of rabbits (n = 10/group) by immunization with (1) rSsCLP5; (2) rSsCLP12; or (3) a mixture of rSsCLP5 and rSsCLP12, three biological replicates groups (n = 10/group) and three control groups (n = 10/group). Levels of specific IgG, total IgE and cytokines in sera were detected and histopathologically analyzed as indicators of vaccine effects. The results showed that 85% (17/20) of rabbits exhibited no detectable skin lesions of S. scabiei infestation in mixed protein groups compared to single protein groups with 75% (15/20) and 70% (14/20), respectively. Moreover, the deworming rates of mixed groups are increased by 10%–20% compared with that of single groups. Each of six groups immunized with rSsCLP displayed significant increases of specific IgG, total IgE, IL-10, and TNF-α. The degree of skin damage in test groups also significantly lower than that of control groups. Thus, purified rSsCLP5 and rSsCLP12 subunit cocktail vaccine induced robust immune protection and could significantly decrease mite populations to reduce the direct transmission between rabbits. Full article
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 899 KiB  
Review
Towards Improved Use of Vaccination in the Control of Infectious Bronchitis and Newcastle Disease in Poultry: Understanding the Immunological Mechanisms
by Anthony C. Ike, Chukwuebuka M. Ononugbo, Okechukwu J. Obi, Chisom J. Onu, Chinasa V. Olovo, Sophia O. Muo, Okoro S. Chukwu, Eleazar E. Reward and Odinakachukwu P. Omeke
Vaccines 2021, 9(1), 20; https://doi.org/10.3390/vaccines9010020 - 4 Jan 2021
Cited by 17 | Viewed by 7677
Abstract
Infectious bronchitis (IB) and Newcastle disease (ND) are two important diseases of poultry and have remained a threat to the development of the poultry industry in many parts of the world. The immunology of avian has been well studied and numerous vaccines have [...] Read more.
Infectious bronchitis (IB) and Newcastle disease (ND) are two important diseases of poultry and have remained a threat to the development of the poultry industry in many parts of the world. The immunology of avian has been well studied and numerous vaccines have been developed against the two viruses. Most of these vaccines are either inactivated vaccines or live attenuated vaccines. Inactivated vaccines induce weak cellular immune responses and require priming with live or other types of vaccines. Advanced technology has been used to produce several types of vaccines that can initiate prime immune responses. However, as a result of rapid genetic variations, the control of these two viral infections through vaccination has remained a challenge. Using various strategies such as combination of live attenuated and inactivated vaccines, development of IB/ND vaccines, use of DNA vaccines and transgenic plant vaccines, the problem is being surmounted. It is hoped that with increasing understanding of the immunological mechanisms in birds that are used in fighting these viruses, a more successful control of the diseases will be achieved. This will go a long way in contributing to global food security and the economic development of many developing countries, given the role of poultry in the attainment of these goals. Full article
Show Figures

Figure 1

19 pages, 2806 KiB  
Review
A Comprehensive Review of the Immunological Response against Foot-and-Mouth Disease Virus Infection and Its Evasion Mechanisms
by Ibett Rodríguez-Habibe, Carmen Celis-Giraldo, Manuel Elkin Patarroyo, Catalina Avendaño and Manuel Alfonso Patarroyo
Vaccines 2020, 8(4), 764; https://doi.org/10.3390/vaccines8040764 - 14 Dec 2020
Cited by 12 | Viewed by 5007
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease, which has been reported for over 100 years, and against which the struggle has lasted for the same amount of time. It affects individuals from the order Artiodactyla, such as cattle, swine, sheep, wild [...] Read more.
Foot-and-mouth disease (FMD) is a highly contagious viral disease, which has been reported for over 100 years, and against which the struggle has lasted for the same amount of time. It affects individuals from the order Artiodactyla, such as cattle, swine, sheep, wild animals from this order, and a few non-cloven hoofed species, such as mice and elephants. FMD causes large-scale economic losses for agricultural production systems; morbidity is almost 100% in an affected population, accompanied by a high mortality rate in young animals due to myocarditis or an inability to suckle if a mother is ill. The aetiological agent is an Aphthovirus from the family Picornaviridae, having seven serotypes: A, O, C, SAT1, SAT2, SAT3, and Asia 1. Serotype variability means that an immune response is serospecific and vaccines are thus designed to protect against each serotype independently. A host’s adaptive immune response is key in defence against pathogens; however, this virus uses successful strategies (along with most microorganisms) enabling it to evade a host’s immune system to rapidly and efficiently establish itself within such host, and thus remain there. This review has been aimed at an in-depth analysis of the immune response in cattle and swine regarding FMD virus, the possible evasion mechanisms used by the virus and describing some immunological differences regarding these species. Such aspects can provide pertinent knowledge for developing new FMD control and prevention strategies. Full article
Show Figures

Figure 1

12 pages, 256 KiB  
Review
Challenges in Vaccinating Layer Hens against Salmonella Typhimurium
by Siyuan Jia, Andrea R. McWhorter, Daniel M. Andrews, Gregory J. Underwood and Kapil K. Chousalkar
Vaccines 2020, 8(4), 696; https://doi.org/10.3390/vaccines8040696 - 19 Nov 2020
Cited by 26 | Viewed by 4465
Abstract
Salmonella Typhimurium is among the most common causes of bacterial foodborne gastrointestinal disease in humans. Food items containing raw or undercooked eggs are frequently identified during traceback investigation as the source of the bacteria. Layer hens can become persistently infected with Salmonella Typhimurium [...] Read more.
Salmonella Typhimurium is among the most common causes of bacterial foodborne gastrointestinal disease in humans. Food items containing raw or undercooked eggs are frequently identified during traceback investigation as the source of the bacteria. Layer hens can become persistently infected with Salmonella Typhimurium and intermittently shed the bacteria over the course of their productive lifetime. Eggs laid in a contaminated environment are at risk of potential exposure to bacteria. Thus, mitigating the bacterial load on farms aids in the protection of the food supply chain. Layer hen producers use a multifaceted approach for reducing Salmonella on farms, including the all-in-all-out management strategy, strict biosecurity, sanitization, and vaccination. The use of live attenuated Salmonella vaccines is favored because they elicit a broader host immune response than killed or inactivated vaccines that have been demonstrated to provide cross-protection against multiple serovars. Depending on the vaccine, two to three doses of Salmonella Typhimurium vaccines are generally administered to layer hens within the first few weeks. The productive life of a layer hen, however, can exceed 70 weeks and it is unclear whether current vaccination regimens are effective for that extended period. The objective of this review is to highlight layer hen specific challenges that may affect vaccine efficacy. Full article
16 pages, 698 KiB  
Review
The Chicken MHC: Insights into Genetic Resistance, Immunity, and Inflammation Following Infectious Bronchitis Virus Infections
by Ana P. da Silva and Rodrigo A. Gallardo
Vaccines 2020, 8(4), 637; https://doi.org/10.3390/vaccines8040637 - 2 Nov 2020
Cited by 26 | Viewed by 5987
Abstract
The chicken immune system has provided an immense contribution to basic immunology knowledge by establishing major landmarks and discoveries that defined concepts widely used today. One of many special features on chickens is the presence of a compact and simple major histocompatibility complex [...] Read more.
The chicken immune system has provided an immense contribution to basic immunology knowledge by establishing major landmarks and discoveries that defined concepts widely used today. One of many special features on chickens is the presence of a compact and simple major histocompatibility complex (MHC). Despite its simplicity, the chicken MHC maintains the essential counterpart genes of the mammalian MHC, allowing for a strong association to be detected between the MHC and resistance or susceptibility to infectious diseases. This association has been widely studied for several poultry infectious diseases, including infectious bronchitis. In addition to the MHC and its linked genes, other non-MHC loci may play a role in the mechanisms underlying such resistance. It has been reported that innate immune responses, such as macrophage function and inflammation, might be some of the factors driving resistance or susceptibility, consequently influencing the disease outcome in an individual or a population. Information about innate immunity and genetic resistance can be helpful in developing effective preventative measures for diseases such as infectious bronchitis, to which a systemic antibody response is often not associated with disease protection. In this review, we summarize the importance of the chicken MHC in poultry disease resistance, particularly to infectious bronchitis virus (IBV) infections and the role played by innate immunity and inflammation on disease outcome. We highlight how future studies focusing on the MHC and non-MHC genes can potentially bring clarity to observed resistance in some chicken B haplotype lines. Full article
Show Figures

Figure 1

24 pages, 1465 KiB  
Review
Newcastle Disease Virus as a Vaccine Vector for 20 Years: A Focus on Maternally Derived Antibody Interference
by Zenglei Hu, Jie Ni, Yongzhong Cao and Xiufan Liu
Vaccines 2020, 8(2), 222; https://doi.org/10.3390/vaccines8020222 - 14 May 2020
Cited by 34 | Viewed by 7573
Abstract
It has been 20 years since Newcastle disease virus (NDV) was first used as a vector. The past two decades have witnessed remarkable progress in vaccine generation based on the NDV vector and optimization of the vector. Protective antigens of a variety of [...] Read more.
It has been 20 years since Newcastle disease virus (NDV) was first used as a vector. The past two decades have witnessed remarkable progress in vaccine generation based on the NDV vector and optimization of the vector. Protective antigens of a variety of pathogens have been expressed in the NDV vector to generate novel vaccines for animals and humans, highlighting a great potential of NDV as a vaccine vector. More importantly, the research work also unveils a major problem restraining the NDV vector vaccines in poultry, i.e., the interference from maternally derived antibody (MDA). Although many efforts have been taken to overcome MDA interference, a lack of understanding of the mechanism of vaccination inhibition by MDA in poultry still hinders vaccine improvement. In this review, we outline the history of NDV as a vaccine vector by highlighting some milestones. The recent advances in the development of NDV-vectored vaccines or therapeutics for animals and humans are discussed. Particularly, we focus on the mechanisms and hypotheses of vaccination inhibition by MDA and the efforts to circumvent MDA interference with the NDV vector vaccines. Perspectives to fill the gap of understanding concerning the mechanism of MDA interference in poultry and to improve the NDV vector vaccines are also proposed. Full article
Show Figures

Figure 1

Back to TopTop