AI Recommendation Service Acceptance: Assessing the Effects of Perceived Empathy and Need for Cognition
Abstract
:1. Introduction
2. Theoretical Background
2.1. AI Recommendation Services
2.2. AIDUA Model
2.2.1. Technology Quality
2.2.2. Personalization Quality
2.2.3. Empathy
2.2.4. Behavioral Intentions
2.3. Moderating Role of Need for Cognition
3. Methodology
3.1. Stimuli and Procedure
3.2. Measurement
3.3. Data Collection and Sample
4. Results
4.1. Measurement Validity and Reliability
4.2. Hypothesis Test
4.3. Moderation Effect of Need for Cognition
5. Conclusions
5.1. General Discussion
5.2. Theoretical and Management Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ewerhard, A.-C.; Sisovsky, K.; Johansson, U. Consumer decision-making of slow moving consumer goods in the age of multi-channels. Int. Rev. Retail. Distrib. Consum. Res. 2019, 29, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Hsu, P.-Y.; Lei, H.-T.; Huang, S.-H.; Liao, T.H.; Lo, Y.-C.; Lo, C.-C. Effects of sentiment on recommendations in social network. Electron. Mark. 2019, 29, 253–262. [Google Scholar] [CrossRef]
- Heimbach, I.; Gottschlich, J.; Hinz, O. The value of user’s Facebook profile data for product recommendation generation. Electron. Mark. 2015, 25, 125–138. [Google Scholar] [CrossRef]
- Yang, D.; Qu, B.; Cudré-Mauroux, P. Privacy-preserving social media data publishing for personalized ranking-based recommendation. IEEE Trans. Knowl. Data Eng. 2018, 31, 507–520. [Google Scholar] [CrossRef] [Green Version]
- West, A.; Clifford, J.; Atkinson, D. “Alexa, build me a brand” An Investigation into the impact of Artificial Intelligence on Branding. Bus. Manag. Rev. 2018, 9, 321–330. [Google Scholar]
- Gursoy, D.; Chi, O.H.; Lu, L.; Nunkoo, R. Consumers acceptance of artificially intelligent (AI) device use in service delivery. Int. J. Inf. Manag. 2019, 49, 157–169. [Google Scholar] [CrossRef]
- Lu, L.; Cai, R.; Gursoy, D. Developing and validating a service robot integration willingness scale. Int. J. Hosp. Manag. 2019, 80, 36–51. [Google Scholar] [CrossRef]
- Lops, P.; De Gemmis, M.; Semeraro, G. Content-based recommender systems: State of the art and trends. Recomm. Syst. Handb. 2011, 73–105. [Google Scholar] [CrossRef]
- Pazzani, M.J.; Billsus, D. Content-based recommendation systems. In The Adaptive Web; Springer: Berlin/Heidelberg, Germany, 2007; pp. 325–341. [Google Scholar]
- Felfernig, A.; Friedrich, G.; Jannach, D.; Zanker, M. An integrated environment for the development of knowledge-based recommender applications. Int. J. Electron. Commer. 2006, 11, 11–34. [Google Scholar] [CrossRef]
- Xu, Y.; Yin, J.; Deng, S.; Xiong, N.N.; Huang, J. Context-aware QoS prediction for web service recommendation and selection. Expert Syst. Appl. 2016, 53, 75–86. [Google Scholar] [CrossRef]
- Li, Z.; Rau, P.-L.P.; Huang, D. Who Should Provide Clothing Recommendation Services: Artificial Intelligence or Human Experts? J. Inf. Technol. Res. 2020, 13, 113–125. [Google Scholar] [CrossRef]
- Logg, J.M.; Minson, J.A.; Moore, D.A. Algorithm appreciation: People prefer algorithmic to human judgment. Organ. Behav. Hum. Decis. Process. 2019, 151, 90–103. [Google Scholar] [CrossRef]
- Wang, J.; Molina, M.D.; Sundar, S.S. When expert recommendation contradicts peer opinion: Relative social influence of valence, group identity and artificial intelligence. Comput. Hum. Behav. 2020, 107, 106278. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- McKechnie, S.; Winklhofer, H.; Ennew, C. Applying the technology acceptance model to the online retailing of financial services. Int. J. Retail. Distrib. Manag. 2006, 34, 388–410. [Google Scholar] [CrossRef]
- Reeves, B.; Nass, C. The Media Equation: How People Treat Computers, Television, and New Media Like Real People; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Adam, M.; Wessel, M.; Benlian, A. AI-based chatbots in customer service and their effects on user compliance. Electron. Mark. 2020, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.H. Measuring individual differences in empathy: Evidence for a multidimensional approach. J. Personal. Soc. Psychol. 1983, 44, 113. [Google Scholar] [CrossRef]
- Bove, L.L. Empathy for service: Benefits, unintended consequences, and future research agenda. J. Serv. Mark. 2019, 33, 31–43. [Google Scholar] [CrossRef]
- Wieseke, J.; Geigenmüller, A.; Kraus, F. On the role of empathy in customer-employee interactions. J. Serv. Res. 2012, 15, 316–331. [Google Scholar] [CrossRef]
- Aljukhadar, M.; Senecal, S.; Daoust, C.-E. Using recommendation agents to cope with information overload. Int. J. Electron. Commer. 2012, 17, 41–70. [Google Scholar] [CrossRef]
- Wei, J.; He, J.; Chen, K.; Zhou, Y.; Tang, Z. Collaborative filtering and deep learning based recommendation system for cold start items. Expert Syst. Appl. 2017, 69, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.P. Applying domain knowledge and social information to product analysis and recommendations: An agent-based decision support system. Expert Syst. 2004, 21, 138–148. [Google Scholar] [CrossRef]
- Lee, D.; Kim, U.; Yeom, K. Content recommendation system using user context-aware based knowledge filtering in smart environments. J. Korean Inst. Next Gener. Comput. 2017, 13, 35–48. [Google Scholar]
- Lazarus, R.S. Progress on a cognitive-motivational-relational theory of emotion. Am. Psychol. 1991, 46, 819. [Google Scholar] [CrossRef]
- Gefen, D.; Karahanna, E.; Straub, D.W. Trust and TAM in online shopping: An integrated model. MIS Q. 2003, 27, 51–90. [Google Scholar] [CrossRef]
- Koufaris, M.; Hampton-Sosa, W. The development of initial trust in an online company by new customers. Inf. Manag. 2004, 41, 377–397. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.H.; Barnes, S. Initial trust and online buyer behaviour. Ind. Manag. Data Syst. 2007, 107, 21–36. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Henderson, R.; Divett, M.J. Perceived usefulness, ease of use and electronic supermarket use. Int. J. Hum. Comput. Stud. 2003, 59, 383–395. [Google Scholar] [CrossRef]
- Liang, T.-P.; Yang, Y.-F.; Chen, D.-N.; Ku, Y.-C. A semantic-expansion approach to personalized knowledge recommendation. Decis. Support Syst. 2008, 45, 401–412. [Google Scholar] [CrossRef]
- Kim, H.; Jung, S.; Ryu, G. A Study on the Restaurant Recommendation Service App Based on AI Chatbot Using Personalization Information. Int. J. Adv. Cult. Technol. 2020, 8, 263–270. [Google Scholar]
- Joly, A.; Goëau, H.; Botella, C.; Glotin, H.; Bonnet, P.; Vellinga, W.-P.; Planqué, R.; Müller, H. Overview of lifeclef 2018: A large-scale evaluation of species identification and recommendation algorithms in the era of ai. In International Conference of the Cross-Language Evaluation Forum for European Languages; Springer: Cham, Switzerland, 2018; pp. 247–266. [Google Scholar]
- East, R.; Singh, J.; Wright, M.; Vanhuele, M. Consumer Behaviour: Applications in Marketing; Sage: New York, NY, USA, 2016. [Google Scholar]
- Araujo, T.; Helberger, N.; Kruikemeier, S.; De Vreese, C.H. In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI Soc. 2020, 35, 611–623. [Google Scholar] [CrossRef]
- Sundar, S.S. The MAIN Model: A Heuristic Approach to Understanding Technology Effects on Credibility; MacArthur Foundation Digital Media and Learning Initiative, The MIT Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Thurman, N.; Moeller, J.; Helberger, N.; Trilling, D. My friends, editors, algorithms, and I: Examining audience attitudes to news selection. Digit. J. 2019, 7, 447–469. [Google Scholar] [CrossRef] [Green Version]
- Adomavicius, G.; Tuzhilin, A. Personalization technologies: A process-oriented perspective. Commun. ACM 2005, 48, 83–90. [Google Scholar] [CrossRef]
- Ahn, H.J. Utilizing popularity characteristics for product recommendation. Int. J. Electron. Commer. 2006, 11, 59–80. [Google Scholar] [CrossRef]
- Cheung, K.-W.; Tsui, K.-C.; Liu, J. Extended latent class models for collaborative recommendation. IEEE Trans. Syst. Man Cybern. Part A 2004, 34, 143–148. [Google Scholar] [CrossRef]
- Devoldre, I.; Davis, M.H.; Verhofstadt, L.L.; Buysse, A. Empathy and social support provision in couples: Social support and the need to study the underlying processes. J. Psychol. 2010, 144, 259–284. [Google Scholar] [CrossRef]
- Baron-Cohen, S. Autism, hypersystemizing, and truth. Q. J. Exp. Psychol. 2008, 61, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Preston, S.D.; De Waal, F.B. Empathy: Its ultimate and proximate bases. Behav. Brain Sci. 2002, 25, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Gorry, G.A.; Westbrook, R.A. Once more, with feeling: Empathy and technology in customer care. Bus. Horiz. 2011, 54, 125–134. [Google Scholar] [CrossRef]
- Cialdini, R.B.; Schaller, M.; Houlihan, D.; Arps, K.; Fultz, J.; Beaman, A.L. Empathy-based helping: Is it selflessly or selfishly motivated? J. Personal. Soc. Psychol. 1987, 52, 749. [Google Scholar] [CrossRef]
- Batson, C.D.; Early, S.; Salvarani, G. Perspective taking: Imagining how another feels versus imaging how you would feel. Personal. Soc. Psychol. Bull. 1997, 23, 751–758. [Google Scholar] [CrossRef]
- Ye, J.; Dong, B.; Lee, J.-Y. The long-term impact of service empathy and responsiveness on customer satisfaction and profitability: A longitudinal investigation in a healthcare context. Mark. Lett. 2017, 28, 551–564. [Google Scholar] [CrossRef]
- Stock, R.M.; Hoyer, W.D. An attitude-behavior model of salespeople’s customer orientation. J. Acad. Mark. Sci. 2005, 33, 536–552. [Google Scholar] [CrossRef]
- Drollinger, T.; Comer, L.B. Salesperson’s listening ability as an antecedent to relationship selling. J. Bus. Ind. Mark. 2013, 28, 50–59. [Google Scholar] [CrossRef]
- Davis, C.; Jiang, L.; Williams, P.; Drolet, A.; Gibbs, B.J. Predisposing customers to be more satisfied by inducing empathy in them. Cornell Hosp. Q. 2017, 58, 229–239. [Google Scholar] [CrossRef]
- Berry, L.L.; Seiders, K.; Grewal, D. Understanding service convenience. J. Mark. 2002, 66, 1–17. [Google Scholar] [CrossRef]
- Ha, S.; Stoel, L. Promoting customer-retailer relationship building: Influence of customer trustworthiness of customer loyalty programme marketing. J. Cust. Behav. 2008, 7, 215–229. [Google Scholar] [CrossRef]
- Tam, K.Y.; Ho, S.Y. Web personalization as a persuasion strategy: An elaboration likelihood model perspective. Inf. Syst. Res. 2005, 16, 271–291. [Google Scholar] [CrossRef] [Green Version]
- Cacioppo, J.T.; Petty, R.E. The need for cognition. J. Personal. Soc. Psychol. 1982, 42, 116. [Google Scholar] [CrossRef]
- Lin, C.-L.; Lee, S.-H.; Horng, D.-J. The effects of online reviews on purchasing intention: The moderating role of need for cognition. Soc. Behav. Personal. 2011, 39, 71–81. [Google Scholar] [CrossRef]
- Petty, R.E.; Cacioppo, J.T.; Goldman, R. Personal involvement as a determinant of argument-based persuasion. J. Personal. Soc. Psychol. 1981, 41, 847. [Google Scholar] [CrossRef]
- Petty, R.E.; Cacioppo, J.T. The effects of involvement on responses to argument quantity and quality: Central and peripheral routes to persuasion. J. Personal. Soc. Psychol. 1984, 46, 69. [Google Scholar] [CrossRef]
- Batra, R.; Stayman, D.M. The role of mood in advertising effectiveness. J. Consum. Res. 1990, 17, 203–214. [Google Scholar] [CrossRef]
- Haugtvedt, C.P.; Petty, R.E.; Cacioppo, J.T. Need for cognition and advertising: Understanding the role of personality variables in consumer behavior. J. Consum. Psychol. 1992, 1, 239–260. [Google Scholar] [CrossRef]
- Zhou, T.; Lu, Y.; Wang, B. Examining online consumers’ initial trust building from an elaboration likelihood model perspective. Inf. Syst. Front. 2016, 18, 265–275. [Google Scholar] [CrossRef]
- Ali, A. Pioneering versus incremental innovation: Review and research propositions. J. Prod. Innov. Manag. 1994, 11, 46–61. [Google Scholar] [CrossRef]
- Yoo, J.M.; Kim, S.-H.; Yi, Y.J. Determinants of perceived innovativeness and their relationship with intention of product adoption: Focusing on consumers’ perspectives. J. Korean Mark. Assoc. 2006, 21, 27–52. [Google Scholar]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L. SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. J. Retail. 1988, 64, 12–40. [Google Scholar]
- Mukherjee, A.; Nath, P. Role of electronic trust in online retailing: A re-examination of the commitment-trust theory. Eur. J. Mark. 2007, 41, 1173–1202. [Google Scholar] [CrossRef]
- Poushneh, A.; Vasquez-Parraga, A.Z. Discernible impact of augmented reality on retail customer’s experience, satisfaction and willingness to buy. J. Retail. Consum. Serv. 2017, 34, 229–234. [Google Scholar] [CrossRef]
- Perry, A. Consumers’ acceptance of smart virtual closets. J. Retail. Consum. Serv. 2016, 33, 171–177. [Google Scholar] [CrossRef]
- Hair, J.F. Multivariate Data Analysis; Prentice Hall: Upper Saddle Rive, NJ, USA, 2009. [Google Scholar]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory 3E; Tata McGraw-Hill Education: New York, NY, USA, 1994. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford Publications: New York, NY, USA, 2017. [Google Scholar]
- Ho, S.Y.; Bodoff, D. The effects of Web personalization on user attitude and behavior. MIS Q. 2014, 38, 497–520. [Google Scholar] [CrossRef]
- Jiang, Y.; Shang, J.; Liu, Y. Maximizing customer satisfaction through an online recommendation system: A novel associative classification model. Decis. Support Syst. 2010, 48, 470–479. [Google Scholar] [CrossRef]
- Berry, L.L.; Zeithaml, V.A.; Parasuraman, A. Five imperatives for improving service quality. MIT Sloan Manag. Rev. 1990, 31, 29. [Google Scholar]
- Shin, D. Empathy and embodied experience in virtual environment: To what extent can virtual reality stimulate empathy and embodied experience? Comput. Hum. Behav. 2018, 78, 64–73. [Google Scholar] [CrossRef]
- Shin, D.; Biocca, F. Exploring immersive experience in journalism. New Media Soc. 2018, 20, 2800–2823. [Google Scholar] [CrossRef]
- Kalajas-Tilga, H.; Hein, V.; Koka, A.; Tilga, H.; Raudsepp, L.; Hagger, M.S. Application of the trans-contextual model to predict change in leisure time physical activity. Psychol. Health 2020, 1–25. [Google Scholar] [CrossRef]
- Grubb, E.L.; Stern, B.L. Self-concept and significant others. J. Mark. Res. 1971, 8, 382–385. [Google Scholar] [CrossRef]
- Jamal, A.; Goode, M.M. Consumers and brands: A study of the impact of self-image congruence on brand preference and satisfaction. Mark. Intell. Plan. 2001, 19, 482–492. [Google Scholar] [CrossRef]
Scale | Standard Loading (λ) | Cronbach’s α | AVE | CR |
---|---|---|---|---|
Technology quality | 0.841 | 0.653 | 0.805 | |
The recommendation service uses new technology | 0.850 | |||
The recommendation service uses professional technology | 0.830 | |||
The recommendation service uses a high level of technology | 0.739 | |||
Personalization quality | 0.910 | 0.836 | 0.854 | |
The recommendation service considers the products that match my needs. | 0.922 | |||
The recommendation service is personalized to me. | 0.907 | |||
Empathy | 0.899 | 0.754 | 0.871 | |
The recommendation service understands my specific needs. | 0.896 | |||
The recommendation service reflects my interests at heart. | 0.894 | |||
The recommendation service gives me individual attention. | 0.812 | |||
Behavioral intention | 0.871 | 0.694 | 0.829 | |
I would like to recommend online recommendation services to others. | 0.873 | |||
I would like to discuss with others about online recommendation services. | 0.837 | |||
I am willing to use online recommendation services to search for products. | 0.787 |
Technology Quality | Personalization Quality | Empathy | Behavioral Intention | |
---|---|---|---|---|
Technology quality | 0.653a | |||
Personalization quality | 0.396 b | 0.836 | ||
Empathy | 0.624 | 0.472 | 0.754 | |
Behavioral intention | 0.536 | 0.255 | 0.602 | 0.694 |
Value of Need for Cognition | Effect | 95% Confidence Interval | |
---|---|---|---|
LLCI | ULCI | ||
Mean − 1 SD (3.276) | 0.552 | 0.405 | 0.699 |
Mean (4.350) | 0.436 | 0.310 | 0.561 |
Mean + 1 SD (5.423) | 0.320 | 0.162 | 0.478 |
Value of Need for Cognition | Effect | 95% Confidence Interval | |
---|---|---|---|
LLCI | ULCI | ||
Mean − 1 SD (3.276) | 0.232 | 0.121 | 0.342 |
Mean (4.350) | 0.321 | 0.230 | 0.413 |
Mean + 1 SD (5.423) | 0.411 | 0.277 | 0.545 |
Hypothesis | Result | |
---|---|---|
H1 | AI recommendation → Technology quality | Supported |
H2 | AI recommendation → Personalization quality | Rejected |
H3 | Technology quality → Personalization quality | Supported |
H4 | Technology quality → Empathy | Supported |
H5 | Personalization quality → Empathy | Supported |
H6 | Empathy → Behavioral intention | Supported |
H7 | Technology quality → Behavioral intention | Supported |
H8 | Personalization quality → Behavioral intention | Rejected |
H9 | Moderating effect of need for cognition: Technology quality → Empathy | Supported |
H10 | Moderating effect of need for cognition: Personalization quality → Empathy | Supported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, N.; Lee, H.-K. AI Recommendation Service Acceptance: Assessing the Effects of Perceived Empathy and Need for Cognition. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 1912-1928. https://doi.org/10.3390/jtaer16050107
Yoon N, Lee H-K. AI Recommendation Service Acceptance: Assessing the Effects of Perceived Empathy and Need for Cognition. Journal of Theoretical and Applied Electronic Commerce Research. 2021; 16(5):1912-1928. https://doi.org/10.3390/jtaer16050107
Chicago/Turabian StyleYoon, Namhee, and Ha-Kyung Lee. 2021. "AI Recommendation Service Acceptance: Assessing the Effects of Perceived Empathy and Need for Cognition" Journal of Theoretical and Applied Electronic Commerce Research 16, no. 5: 1912-1928. https://doi.org/10.3390/jtaer16050107
APA StyleYoon, N., & Lee, H. -K. (2021). AI Recommendation Service Acceptance: Assessing the Effects of Perceived Empathy and Need for Cognition. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1912-1928. https://doi.org/10.3390/jtaer16050107