Impact of the COVID-19 Pandemic on Online Consumer Purchasing Behavior
Abstract
:1. Introduction
2. Literature Review
- -
- Cluster 1 (shown in red) is the largest and encompasses 307 items, which appear fewer than 5 times in the studied papers. Scholars have paid considerable attention to issues associated with Internet advancement, concentrating in particular on security. The red cluster is related to business models and strategies, business process optimization and management, competitiveness, legislative regulation, possible barriers and risk assessment, technological readiness, etc.
- -
- Cluster 2 (green, 57 items) embraces the interests in consumer satisfaction, policy communication, data protection, and related issues. Particular attention is devoted to marketing, in particular B2B (business-to-business) and B2C (business-to-consumer) initiatives.
- -
- Cluster 3 (blue, 45 items) is dedicated to business ethics. Publications in this cluster focus more on pricing, improving online platforms, attracting customers, increasing their loyalty, enhancing the quality and reliability of services, boosting reputation, personalizing the customer experience, and more.
- -
- Cluster 4 (yellow, 42 items) is related to big data processing, artificial intelligence, deep learning, text mining, social networking, information systems, information security, and such.
- -
- Cluster 5 (purple, 34 items) includes the works about the relationship between purchaser pleasure, customer loyalty and retention, and the e-service quality of e-commerce platforms.
- -
- Cluster 6 (blue, 14 items) contains papers dedicated to online selling through social networks, e-loyalty, online marketing, web design, and more.
- -
- Cluster 7 (orange, 7 items) is the smallest cluster with papers that explore the relationship between neural networks, game theory, simulation, and C2C (consumer-to-consumer) e-commerce.
- -
- Marketing factors (e.g., product design, price, promotion, packaging, positioning, and distribution) [38];
- -
- Personality characteristics (such as age, gender, education, and income) [39];
- -
- Psychological drivers (purchase motives, product perception, and attitude to the product) [40];
- -
- Situational framework (the physical environment at the time of purchase, the environment, and the time factor) [41];
- -
- Social determinants (social status, reference groups, and family) [42];
- -
- Cultural factors (religion, social class) [43];
- -
- Intergenerational behavior [44].
3. Materials and Methods
- Decision-making speed was calculated from the scores of answers to questions 1–2 and normalized to the value .
- Level of consumer awareness/experience was calculated from the scores of the answers to questions 3–4 and normalized to the value .
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leach, M.; MacGregor, H.; Scoones, I.; Wilkinson, A. Post-pandemic transformations: How and why COVID-19 requires us to rethink development. World Dev. 2021, 138, 105233. [Google Scholar] [CrossRef]
- Alessa, A.A.; Alotaibie, T.M.; Elmoez, Z.; Alhamad, H.E. Impact of COVID-19 on entrepreneurship and consumer behaviour: A case study in Saudi Arabia. J. Asian Financ. Econ. Bus. 2021, 8, 201–210. [Google Scholar]
- Wanasida, A.S.; Bernarto, I.; Sudibjo, N.; Purwanto, A. The role of business capabilities in supporting organization agility and performance during the COVID-19 pandemic: An empirical study in Indonesia. J. Asian Financ. Econ. Bus. 2021, 8, 897–911. [Google Scholar]
- Borodin, A.; Shash, N.; Panaedova, G.; Frumina, S.; Kairbekuly, A.; Mityushina, I. The impact of the publication of non-financial statements on the financial performance of companies with the identification of intersectoral features. Entrep. Sustain. Issues 2019, 7, 1654–1665. [Google Scholar] [CrossRef] [Green Version]
- Guthrie, C.; Fosso-Wamba, S.; Arnaud, J.B. Online consumer resilience during a pandemic: An exploratory study of e-commerce behavior before, during and after a COVID-19 lockdown. J. Retail. Consum. Serv. 2021, 61, 102570. [Google Scholar] [CrossRef]
- Abid, A.; Jie, S. Impact of COVID-19 on agricultural food: A Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis. Food Front. 2021, in press. [Google Scholar] [CrossRef]
- Tran, L.T.T. Managing the effectiveness of e-commerce platforms in a pandemic. J. Retail. Consum. Serv. 2021, 58, 102287. [Google Scholar] [CrossRef]
- Xayrullaevna, S.N.; Pakhritdinovna, K.D.; Anvarovna, B.G. Digitalization of the economy during a pandemic: Accelerating the pace of development. JCR 2020, 7, 2491–2498. [Google Scholar]
- Dannenberg, P.; Fuchs, M.; Riedler, T.; Wiedemann, C. Digital transition by COVID-19 pandemic? The German food online retail. Tijdschr. Econ. Soc. Geogr. 2020, 111, 543–560. [Google Scholar] [CrossRef]
- Afonasova, M.A.; Panfilova, E.E.; Galichkina, M.A.; Ślusarczyk, B. Digitalization in economy and innovation: The effect on social and economic processes. Pol. J. Manag. Stud. 2019, 19, 22–32. [Google Scholar]
- Im, J.; Kim, H.; Miao, L. CEO letters: Hospitality corporate narratives during the COVID-19 pandemic. Int. J. Hosp. Manag. 2021, 92, 102701. [Google Scholar] [CrossRef]
- Ali, B.J. Impact of consumer animosity, boycott participation, boycott motivation, and product judgment on purchase readiness or aversion of Kurdish consumers in Iraq. J. Consum. Aff. 2021, 55, 504–523. [Google Scholar] [CrossRef]
- Shvidanenko, O.; Sica, E.; Busarieva, T. Creativity as a new production factor of the world economy. Manag. Theory Studi. Rural Bus. Infrastruct. Dev. 2019, 41, 127–134. [Google Scholar] [CrossRef]
- Sohn, S. A contextual perspective on consumers’ perceived usefulness: The case of mobile online shopping. J. Retail. Consum. Serv. 2017, 38, 22–33. [Google Scholar] [CrossRef]
- Fletcher, R.; Park, S. The impact of trust in the news media on online news consumption and participation. Digit. J. 2017, 5, 1281–1299. [Google Scholar] [CrossRef]
- Ismagilova, E.; Slade, E.; Rana, N.P.; Dwivedi, Y.K. The effect of characteristics of source credibility on consumer behaviour: A meta-analysis. J. Retail. Consum. Serv. 2020, 53, 101736. [Google Scholar] [CrossRef] [Green Version]
- Punyatoya, P. Effects of cognitive and affective trust on online customer behavior. Mark. Intell. Plan. 2019, 37, 80–96. [Google Scholar] [CrossRef]
- Loxton, M.; Truskett, R.; Scarf, B.; Sindone, L.; Baldry, G.; Zhao, Y. Consumer behaviour during crises: Preliminary research on how coronavirus has manifested consumer panic buying, herd mentality, changing discretionary spending and the role of the media in influencing behaviour. J. Risk Financ. Manag. 2020, 13, 166. [Google Scholar] [CrossRef]
- Sumarliah, E.; Khan, S.U.; Khan, I.U. Online hijab purchase intention: The influence of the Coronavirus outbreak. J. Islam. Mark. 2021, 12, 598–621. [Google Scholar] [CrossRef]
- Joia, L.A.; Lorenzo, M. Zoom in, zoom out: The impact of the COVID-19 pandemic in the classroom. Sustainability 2021, 13, 2531. [Google Scholar] [CrossRef]
- Shestak, V.; Gura, D.; Khudyakova, N.; Shaikh, Z.A.; Bokov, Y. Chatbot design issues: Building intelligence with the Cartesian paradigm. Evol. Intell. 2020. [Google Scholar] [CrossRef]
- Hobbs, J.E. Food supply chains during the COVID-19 pandemic. Can. J. Agric. Econ. 2020, 68, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.; Leung, X.Y. Mindset matters in purchasing online food deliveries during the pandemic: The application of construal level and regulatory focus theories. Int. J. Hosp. Manag. 2020, 91, 102677. [Google Scholar] [CrossRef]
- Rai, P. Consumers buying behaviour and challenges faced by consumers during COVID-19 pandemic regarding FMCG products (during Indian lockdown). Turk. J. Comput. Math. Educ. 2021, 12, 3403–3412. [Google Scholar]
- Khan, M.M.; Shams-E-Mofiz, M.; Sharmin, Z.A. Development of e-commerce-based online web application for COVID-19 pandemic. iBusiness 2020, 12, 113–126. [Google Scholar] [CrossRef]
- Prasetyo, Y.T.; Tanto, H.; Mariyanto, M.; Hanjaya, C.; Young, M.N.; Persada, S.F.; Miraja, B.A.; Redi, A.A.N.P. Factors affecting customer satisfaction and loyalty in online food delivery service during the covid-19 pandemic: Its relation with open innovation. J. Open Innov. 2021, 7, 76. [Google Scholar] [CrossRef]
- Király, O.; Potenza, M.N.; Stein, D.J.; King, D.L.; Hodgins, D.C.; Saunders, J.B.; Griffiths, M.D.; Gjoneska, B.; Billieux, J.; Brand, M.; et al. Preventing problematic internet use during the COVID-19 pandemic: Consensus guidance. Compr. Psychiatry 2020, 100, 152180. [Google Scholar] [CrossRef] [PubMed]
- Eger, L.; Komárková, L.; Egerová, D.; Mičík, M. The effect of COVID-19 on consumer shopping behaviour: Generational cohort perspective. J. Retail. Consum. Serv. 2021, 61, 102542. [Google Scholar] [CrossRef]
- Islam, T.; Pitafi, A.H.; Arya, V.; Wang, Y.; Akhtar, N.; Mubarik, S.; Xiaobei, L. Panic buying in the COVID-19 pandemic: A multi-country examination. J. Retail. Consum. Serv. 2021, 59, 102357. [Google Scholar] [CrossRef]
- Jílková, P.; Králová, P. Digital consumer behaviour and eCommerce trends during the COVID-19 crisis. Int. Adv. Econ. Res. 2021, 27, 83–85. [Google Scholar] [CrossRef]
- Armando, R.L.C. Disruption in the consumer decision-making? Critical analysis of the consumer’s decision making and its possible change by the COVID-19. Turk. J. Comput. Math. Educ. 2021, 12, 1468–1480. [Google Scholar]
- Barbu, C.M.; Florea, D.L.; Dabija, D.-C.; Barbu, M.C.R. Customer experience in Fintech. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 1415–1433. [Google Scholar] [CrossRef]
- Filimonau, V.; Beer, S.; Ermolaev, V.A. The Covid-19 pandemic and food consumption at home and away: An exploratory study of English households. Socio Econ. Plan. Sci. 2021, in press. [Google Scholar] [CrossRef]
- Shamim, A.; Siddique, J.; Noor, U.; Hassan, R. Co-creative service design for online businesses in post-COVID-19. J. Islam. Mark. 2021, in press. [Google Scholar] [CrossRef]
- Masaeli, N.; Farhadi, H. Prevalence of Internet-based addictive behaviors during COVID-19 pandemic: A systematic review. J. Addict. Dis. 2021, in press. [Google Scholar] [CrossRef]
- Pop, R.; Palacean, Z.; Dabija, D.C.; Alt, A.M. The impact of social media influencers on travel decisions: The role of trust in consumer decision journey. Curr. Issues Tour. 2021, in press. [Google Scholar] [CrossRef]
- Ślusarczyk, B.; Nathan, R.J.; Pypłacz, P. Employee Preparedness for industry 4.0 in logistic sector: A cross-national study between Poland and Malaysia. Soc. Sci. 2021, 10, 258. [Google Scholar] [CrossRef]
- Alhaimer, R. Fluctuating attitudes and behaviors of customers toward online shopping in times of emergency: The case of Kuwait during the COVID-19 pandemic. J. Internet Commer. 2021, in press. [Google Scholar] [CrossRef]
- Muangmee, C.; Kot, S.; Meekaewkunchorn, N.; Kassakorn, N.; Khalid, B. Factors determining the behavioral intention of using food delivery apps during COVID-19 pandemics. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 1297–1310. [Google Scholar] [CrossRef]
- Hudimova, A.; Popovych, I.; Baidyk, V.; Buriak, O.; Kechyk, O. The impact of social media on young web users’ psychological well-being during the COVID-19 pandemic progression. Amazon. Investig. 2021, 10, 50–61. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Yao, P. Research jungle on online consumer behaviour in the context of Web 2.0: Traceability, frontiers and perspectives in the post-pandemic era. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 1740–1767. [Google Scholar] [CrossRef]
- Naeem, M.; Ozuem, W. Customers’ social interactions and panic buying behavior: Insights from social media practices. J. Consum. Behav. 2021, in press. [Google Scholar] [CrossRef]
- Goswami, S.; Chouhan, V. Impact of change in consumer behaviour and need prioritisation on retail industry in Rajasthan during COVID-19 pandemic. Mater. Today Proc. 2021, in press. [Google Scholar] [CrossRef]
- Dabija, D.C.; Bejan, B.; Tipi, N. Generation X versus Millennials communication behavior on social media when purchasing food versus tourist services. Ekon. Manag. 2018, 21, 191–205. [Google Scholar]
- Sim, J.; Saunders, B.; Waterfield, J.; Kingstone, T. Can sample size in qualitative research be determined a priori? Int. J. Soc. Res. Methodol. 2018, 21, 619–634. [Google Scholar] [CrossRef]
- Zaidan, B.B.; Zaidan, A.A. Comparative study on the evaluation and benchmarking information hiding approaches based multi-measurement analysis using TOPSIS method with different normalisation, separation and context techniques. Measurement 2018, 117, 277–294. [Google Scholar] [CrossRef]
- Doustkam, M.; Pourheydari, S.; Mansouri, A.; Shahraki-Mohajer, A.; Ebrahimi, A.; Goli, F.; Afshar-Zanjani, H.; Hekmatipour, B. The mediating role of psychosomatic symptoms in the relationship between personality characteristics and marital conflicts. Int. J. Body Mind Cult. 2021, 8, 19–27. [Google Scholar]
- Luu, S.; ElBassiouny, A. Factor analysis in personality research. In The Wiley Encyclopedia of Personality and Individual Differences: Measurement and Assessment; Wiley: Hoboken, NJ, USA, 2020; pp. 109–111. [Google Scholar]
- Contentsquare. 2020. Available online: https://contentsquare.com/ (accessed on 17 May 2021).
- Statista. 2020. Available online: https://www.statista.com/ (accessed on 17 May 2021).
- Liu, Z.; Shestak, V. Issues of crowdsourcing and mobile app development through the intellectual property protection of third parties. Peer Peer Netw. Appl. 2020, 14, 2618–2625. [Google Scholar] [CrossRef]
- Shah, A.K.; Ravichandran, P.; Ravichandran, P. COVID-19 pandemic: Insights into human behaviour. Int. J. Community Med. Public Health 2020, 7, 4213. [Google Scholar] [CrossRef]
- Janssen, M.; Chang, B.P.; Hristov, H.; Pravst, I.; Profeta, A.; Millard, J. Changes in food consumption during the COVID-19 pandemic: Analysis of consumer survey data from the first lockdown period in Denmark, Germany, and Slovenia. Front. Nutr. 2021, 8, 60. [Google Scholar] [CrossRef]
- Mainolfi, G. Exploring materialistic bandwagon behaviour in online fashion consumption: A survey of Chinese luxury consumers. J. Bus. Res. 2020, 120, 286–293. [Google Scholar] [CrossRef]
- Carroll, N.; Conboy, K. Normalising the “new normal”: Changing tech-driven work practices under pandemic time pressure. Int. J. Inf. Manag. 2020, 55, 102186. [Google Scholar] [CrossRef]
- Kassim, N.M.; Ramayah, T.; Mohamad, W.N.; Shabbir, M.S. Battling COVID-19: The effectiveness of biometrics towards enhancing security of internet banking in Malaysia. Int. J. Enterp. Inf. Syst. 2021, 17, 71–91. [Google Scholar] [CrossRef]
- Khan, I.; Fatma, M. Online destination brand experience and authenticity: Does individualism-collectivism orientation matter? J. Dest. Mark. Manag. 2021, 20, 100597. [Google Scholar]
- Hesham, F.; Riadh, H.; Sihem, N.K. What have we learned about the effects of the COVID-19 pandemic on consumer behavior? Sustainability 2021, 13, 4304. [Google Scholar] [CrossRef]
- Boichenko, K.S.; Shvydanenko, G.A.; Besarab, S.A.; Shvydka, O.P.; Kyryliuk, O.V. Marketing innovations management in the context of integrated enterprise development. Int. J. Manag. 2020, 11, 126–137. [Google Scholar]
- Naeem, M. Do social media platforms develop consumer panic buying during the fear of Covid-19 pandemic. J. Retail. Consum. Serv. 2021, 58, 102226. [Google Scholar] [CrossRef]
- Zandi, G.; Shahzad, I.; Farrukh, M.; Kot, S. Supporting role of society and firms to COVID-19 management among medical practitioners. Int. J. Environ. Res. Public Health 2020, 17, 7961. [Google Scholar] [CrossRef]
- Abbey, J.D.; Meloy, M.G. Attention by design: Using attention checks to detect inattentive respondents and improve data quality. J. Oper. Manag. 2017, 53, 63–70. [Google Scholar] [CrossRef]
- Chaiyasoonthorn, W.; Khalid, B.; Chaveesuk, S. Success of smart cities development with community’s acceptance of new technologies: Thailand perspective. In Proceedings of the 9th International Conference on Information Communication and Management, Prague, Czech Republic, 23–26 August 2019; pp. 106–111. [Google Scholar]
- Zhou, S.; Qiao, Z.; Du, Q.; Wang, G.A.; Fan, W.; Yan, X. Measuring customer agility from online reviews using big data text analytics. J. Manag. Inf. Syst. 2018, 35, 510–539. [Google Scholar] [CrossRef]
No. | Factor | Characteristics |
---|---|---|
1 | A | openness to online shopping |
2 | B | the ability to make meaningful purchases |
3 | C | emotional stability |
4 | E | independence in purchasing decisions |
5 | F | impulsiveness to buy online |
6 | G | conscientious decision making |
7 | H | taking the risk when shopping online |
8 | I | the presence of aesthetic needs |
9 | L | buyer’s gullibility when buying online |
10 | M | practicality of online shopping |
11 | N | refinement of taste in choosing goods online |
12 | O | uncertainty when buying online |
13 | Q1 | a tendency to experiment and innovate |
14 | Q2 | the desire for independent decisions and actions |
15 | Q3 | self-control and discipline in online shopping |
16 | Q4 | internal tension when shopping online |
17 | MD | adequacy of the assessment of one’s capabilities |
Factor | Question/Response/Score | ||||||
---|---|---|---|---|---|---|---|
MD | 1. b-1 a-2 | 18. b-1 c-2 | 35. b-1 c-2 | 52. b-1 a-2 | 69. b-1 c-2 | 86. b-1 c-2 | 103. b-1 c-2 |
A | 2. b-1 c-2 | 19. b-1 a-2 | 36. b-1 c-2 | 53. b-1 a-2 | 70. b-1 a-2 | 87. b-1 c-2 | 104. a-1 |
B | 3. b-1 | 20. c-1 | 37. b-1 | 54. c-1 | 71. a-1 | 88. c-1 | 105. b-1 |
C | 4. b-1 a-2 | 21. b-1 a-2 | 38. b-1 c-2 | 55. b-1 a-2 | 72. b-1 c-2 | 89. b-1 c-2 | |
E | 5. b-1 c-2 | 22. b-1 c-2 | 39. b-1 c-2 | 56. b-1 a-2 | 73. b-1 c-2 | 90. b-1 a-2 | |
F | 6. b-1 c-2 | 23. b-1 a-2 | 40. b-1 c-2 | 57. b-1 a-2 | 74. b-1 a-2 | 91. b-1 c-2 | |
G | 7. b-1 a-2 | 24. b-1 c-2 | 41. b-1 a-2 | 58. b-1 c-2 | 75. b-1 a-2 | 92. b-1 c-2 | |
H | 8. b-1 a-2 | 25. b-1 c-2 | 42. b-1 c-2 | 59. b-1 a-2 | 76. b-1 a-2 | 93. b-1 c-2 | |
I | 9. b-1 a-2 | 26. b-1 a-2 | 43. b-1 c-2 | 60. b-1 a-2 | 77. b-1 c-2 | 94. b-1 c-2 | |
L | 10. b-1 a-2 | 27. b-1 c-2 | 44. b-1 c-2 | 61. b-1 c-2 | 78. b-1 a-2 | 95. b-1 a-2 | |
M | 11. b-1 c-2 | 28. b-1 c-2 | 45. b-1 a-2 | 62. b-1 a-2 | 79. b-1 a-2 | 96. b-1 c-2 | |
N | 12. b-1 c-2 | 29. b-1 c-2 | 46. b-1 a-2 | 63. b-1 a-2 | 80. b-1 c-2 | 97. b-1 c-2 | |
O | 13. b-1 c-2 | 30. b-1 a-2 | 47. b-1 c-2 | 64. b-1 a-2 | 81. b-1 c-2 | 98. b-1 a-2 | |
Q1 | 14. b-1 a-2 | 31. b-1 a-2 | 48. b-1 c-2 | 65. b-1 c-2 | 82. b-1 c-2 | 99. b-1 a-2 | |
Q2 | 15. b-1 a-2 | 32. b-1 c-2 | 49. b-1 a-2 | 66. b-1 a-2 | 83. b-1 c-2 | 100. b-1 c-2 | |
Q3 | 16. b-1 a-2 | 33. b-1 a-2 | 50. b-1 a-2 | 67. b-1 a-2 | 84. b-1 c-2 | 101. b-1 c-2 | |
Q4 | 17. b-1 a-2 | 34. b-1 c-2 | 51. b-1 c-2 | 68. b-1 a-2 | 85. b-1 c-2 | 102. b-1 a-2 |
Factor | Sten | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | M | δ | |
A | 0–4 | 5 | 6 | - | 7 | 8 | 9 | 10 | 11 | 12 | 8.06 | 1.7 |
B | 0–2 | - | 3 | - | 4 | - | 5 | - | 6 | 7–8 | 4.5 | 0.99 |
C | 0–3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 7.5 | 1.77 |
E | 0–1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10–12 | 5.5 | 1.66 |
F | 0–2 | - | 3 | 4 | 5 | 6 | 7 | - | 8 | 9–12 | 5.6 | 1.68 |
G | 0–3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 7.8 | 1.92 |
H | 0–3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 7.7 | 1.89 |
I | 0–3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 7.6 | 1.68 |
L | 0–1 | 2 | - | 3 | 4 | - | 5 | 6 | 7 | 8–12 | 4.3 | 1.54 |
M | 0–3 | - | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11–12 | 5.5 | 1.63 |
N | 0–1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10–12 | 5.5 | 1.63 |
O | 0–1 | 2–3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11–12 | 6.6 | 2.14 |
Q1 | 0–4 | 5 | 6 | - | 7 | 8 | 9 | 10 | 11 | 12 | 8.1 | 1.33 |
Q2 | 0–2 | 3 | - | 4 | 5 | 6 | 7 | 8 | 9 | 10–12 | 5.8 | 1.69 |
Q3 | 0–2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11–12 | 6.3 | 1.66 |
Q4 | 0–1 | 2 | 3 | 4 | 5 | 6–7 | 8 | 9 | 10 | 11–12 | 6.0 | 1.86 |
MD | 0–2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11–12 | 6.7 | 1.74 |
Question | Answer Options |
---|---|
1. Do you need to think quickly and decide whether you need to buy a particular product or service? |
|
2. Do you need anything to be purchased immediately? |
|
3. Do you have any experience in purchasing this type of product online? |
|
4. Do you think you have enough information to decide on purchasing a particular product or service? |
|
No. | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 8.00 | 0.67 | 8.00 | 0.67 | 9.00 | 0.75 | 0.00 | 0.00 | 2.00 | 1.00 | 0.60 | 0.40 |
2 | 9.00 | 0.75 | 9.00 | 0.75 | 9.00 | 0.75 | 2.00 | 1.00 | 2.00 | 1.00 | 0.88 | 0.13 |
3 | 10.00 | 0.83 | 10.00 | 0.83 | 10.00 | 0.83 | 2.00 | 1.00 | 1.00 | 0.50 | 0.79 | 0.21 |
4 | 5.00 | 0.41 | 3.2 | 0.25 | 8.3 | 0.66 | 1.00 | 0.50 | 0.00 | 0.00 | 0.34 | 0.66 |
5 | 12.00 | 1.00 | 8.00 | 0.67 | 8.00 | 0.67 | 1.00 | 0.50 | 1.00 | 0.50 | 0.64 | 0.36 |
6 | 11.00 | 0.92 | 5.00 | 0.42 | 6.00 | 0.50 | 1.00 | 0.50 | 0.00 | 0.00 | 0.43 | 0.57 |
7 | 6.00 | 0.50 | 6.00 | 0.50 | 10.00 | 0.83 | 1.00 | 0.50 | 2.00 | 1.00 | 0.68 | 0.32 |
8 | 10.00 | 0.83 | 10.00 | 0.83 | 10.00 | 0.83 | 2.00 | 1.00 | 0.00 | 0.00 | 0.67 | 0.33 |
9 | 11.00 | 0.92 | 11.00 | 0.92 | 11.00 | 0.92 | 2.00 | 1.00 | 1.00 | 0.50 | 0.83 | 0.17 |
10 | 9.00 | 0.75 | 9.00 | 0.75 | 9.00 | 0.75 | 1.00 | 0.50 | 2.00 | 1.00 | 0.75 | 0.25 |
11 | 10.00 | 0.83 | 12.00 | 1.00 | 10.00 | 0.83 | 0.00 | 0.00 | 2.00 | 1.00 | 0.69 | 0.31 |
12 | 11.00 | 0.92 | 11.00 | 0.92 | 11.00 | 0.92 | 0.00 | 0.00 | 2.00 | 1.00 | 0.71 | 0.29 |
13 | 12.00 | 1.00 | 5.00 | 0.42 | 10.00 | 0.83 | 0.00 | 0.00 | 2.00 | 1.00 | 0.63 | 0.38 |
14 | 8.00 | 0.67 | 8.00 | 0.67 | 8.00 | 0.67 | 0.00 | 0.00 | 2.00 | 1.00 | 0.58 | 0.42 |
15 | 9.00 | 0.75 | 9.00 | 0.75 | 9.00 | 0.75 | 2.00 | 1.00 | 2.00 | 1.00 | 0.88 | 0.13 |
16 | 10.00 | 0.83 | 10.00 | 0.83 | 10.00 | 0.83 | 1.00 | 0.50 | 2.00 | 1.00 | 0.79 | 0.21 |
17 | 11.00 | 0.92 | 11.00 | 0.92 | 11.00 | 0.92 | 1.00 | 0.50 | 2.00 | 1.00 | 0.83 | 0.17 |
18 | 12.00 | 1.00 | 7.00 | 0.58 | 8.00 | 0.67 | 1.00 | 0.50 | 2.00 | 1.00 | 0.75 | 0.25 |
Dependent Variable | Period | INI | CNI | ANI | CENI | DVI |
---|---|---|---|---|---|---|
Composite Index of Online Purchasing Behavior | June | 0.496 | 0.623 | 0.367 | 0.639 | 0.339 |
August | 0.473 | 0.562 | 0.474 | 0.727 | 0.694 | |
October | 0.588 | 0.677 | 0.610 | 0.802 | 0.754 | |
December | 0.596 | 0.720 | 0.659 | 0.914 | 0.800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, S.; Ślusarczyk, B.; Hajizada, S.; Kovalyova, I.; Sakhbieva, A. Impact of the COVID-19 Pandemic on Online Consumer Purchasing Behavior. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 2263-2281. https://doi.org/10.3390/jtaer16060125
Gu S, Ślusarczyk B, Hajizada S, Kovalyova I, Sakhbieva A. Impact of the COVID-19 Pandemic on Online Consumer Purchasing Behavior. Journal of Theoretical and Applied Electronic Commerce Research. 2021; 16(6):2263-2281. https://doi.org/10.3390/jtaer16060125
Chicago/Turabian StyleGu, Shengyu, Beata Ślusarczyk, Sevda Hajizada, Irina Kovalyova, and Amina Sakhbieva. 2021. "Impact of the COVID-19 Pandemic on Online Consumer Purchasing Behavior" Journal of Theoretical and Applied Electronic Commerce Research 16, no. 6: 2263-2281. https://doi.org/10.3390/jtaer16060125
APA StyleGu, S., Ślusarczyk, B., Hajizada, S., Kovalyova, I., & Sakhbieva, A. (2021). Impact of the COVID-19 Pandemic on Online Consumer Purchasing Behavior. Journal of Theoretical and Applied Electronic Commerce Research, 16(6), 2263-2281. https://doi.org/10.3390/jtaer16060125