The Role of Influencers in Live Streaming E-Commerce: Influencer Trust, Attachment, and Consumer Purchase Intention
Abstract
:1. Introduction
2. Literature Review and Hypotheses
2.1. Customer Experience and Consumer Purchase Intention
2.2. Mediating Effect of Trust between Customer Experience and Consumer Purchase Intention
2.3. Mediating Effect of Attachment between Customer Experience and Consumer Purchase Intention
2.4. Research Framework
3. Methodology
4. Results
4.1. Reliability and Validity Analyses
4.2. Model Hypothesis Testing
4.2.1. Path Coefficient Test
4.2.2. Mediation Test
4.2.3. Non-Parametric Test
5. Discussion and Conclusions
5.1. Customer Experience Significantly Impacts Live Streamer Trust and Attachment
5.2. The Trust and Attachment of the Live Streamer Affect Consumer Decision-Making
5.3. Fans of Live Streaming E-Commerce Shopping
6. Implications, Limitations, and Future Research
6.1. Theoretical Implications
6.2. Managerial Implication
6.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mudambi, S.; Schuff, D. What Makes a Helpful Online Review? A Study of Customer Reviews on Amazon. Com. MIS Q. 2010, 34, 185–200. [Google Scholar] [CrossRef]
- Burkhardt, G.; Boy, F.; Doneddu, D.; Hajli, N. Privacy Behaviour: A Model for Online Informed Consent. J. Bus. Ethics 2023, 186, 237–255. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, N.; Chen, H. The Digital Platform, Enterprise Digital Transformation, and Enterprise Performance of Cross-Border E-Commerce—From the Perspective of Digital Transformation and Data Elements. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 777–794. [Google Scholar] [CrossRef]
- Torabi, M.; Bélanger, C.H. Influence of Online Reviews on Student Satisfaction Seen through a Service Quality Model. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 3063–3077. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Liang, H. Did New Retail Enhance Enterprise Competition during the COVID-19 Pandemic? An Empirical Analysis of Operating Efficiency. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 352–371. [Google Scholar] [CrossRef]
- Hou, F.; Guan, Z.; Li, B.; Chong, A.Y.L. Factors Influencing People’s Continuous Watching Intention and Consumption Intention in Live Streaming: Evidence from China. Internet Res. 2019, 30, 141–163. [Google Scholar] [CrossRef]
- Ma, L.; Gao, S.; Zhang, X. How to Use Live Streaming to Improve Consumer Purchase Intentions: Evidence from China. Sustainability 2022, 14, 1045. [Google Scholar] [CrossRef]
- Lin, S.-C.; Tseng, H.-T.; Shirazi, F.; Hajli, N.; Tsai, P.-T. Exploring Factors Influencing Impulse Buying in Live Streaming Shopping: A Stimulus-Organism-Response (SOR) Perspective. Asia Pac. J. Mark. Logist. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Tseng, H.-T.; Aghaali, N.; Hajli, D.N. Customer Agility and Big Data Analytics in New Product Context. Technol. Forecast. Soc. Chang. 2022, 180, 121690. [Google Scholar] [CrossRef]
- Attar, R.W.; Almusharraf, A.; Alfawaz, A.; Hajli, N. New Trends in E-Commerce Research: Linking Social Commerce and Sharing Commerce: A Systematic Literature Review. Sustainability 2022, 14, 16024. [Google Scholar] [CrossRef]
- Xu, Y.; Ye, Y. Who Watches Live Streaming in China? Examining Viewers’ Behaviors, Personality Traits, and Motivations. Front. Psychol. 2020, 11, 1607. [Google Scholar] [CrossRef] [PubMed]
- Saprikis, V.; Markos, A.; Zarmpou, T.; Vlachopoulou, M. Mobile Shopping Consumers’ Behavior: An Exploratory Study and Review. J. Theor. Appl. Electron. Commer. Res. 2018, 13, 71–90. [Google Scholar] [CrossRef]
- Al-Adwan, A.S.; Sammour, G. What Makes Consumers Purchase Mobile Apps: Evidence from Jordan. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 562–583. [Google Scholar] [CrossRef]
- Clement Addo, P.; Fang, J.; Asare, A.O.; Kulbo, N.B. Customer Engagement and Purchase Intention in Live-Streaming Digital Marketing Platforms. Serv. Ind. J. 2021, 41, 767–786. [Google Scholar] [CrossRef]
- Gandhi, R.; Cook, C.L.; LaMastra, N.; Uttarapong, J.; Wohn, D.Y. An Exploration of Mental Health Discussions in Live Streaming Gaming Communities. Front. Psychol. 2021, 12, 575653. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, L.; Chen, H.; Yang, J.; Fan, C. Risk Factors of Consumer Switching Behaviour for Cross-Border e-Commerce Mobile Platform. Int. J. Mob. Commun. 2020, 18, 641–664. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Z.; Liu, H. Do Long-Life Customers Pay More in Pay-What-You-Want Pricing? Evidence from Live Streaming. J. Bus. Res. 2022, 142, 998–1009. [Google Scholar] [CrossRef]
- Yang, W.; Gao, H.; Yang, Y.; Liao, J. Embodied Carbon in China’s Export Trade: A Multi Region Input-Output Analysis. Int. J. Environ. Res. Public Health 2022, 19, 3894. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, S.; Shao, B.; Gao, W.; Xu, Y. How Do Interpersonal Interaction Factors Affect Buyers’ Purchase Intention in Live Stream Shopping? The Mediating Effects of Swift Guanxi. Internet Res. 2021, 32, 335–361. [Google Scholar] [CrossRef]
- Chen, N.; Yang, Y. The Impact of Customer Experience on Consumer Purchase Intention in Cross-Border E-Commerce——Taking Network Structural Embeddedness as Mediator Variable. J. Retail. Consum. Serv. 2021, 59, 102344. [Google Scholar] [CrossRef]
- Kim, J.B. The Mediating Role of Presence on Consumer Intention to Participate in a Social Commerce Site. J. Internet Commer. 2015, 14, 425–454. [Google Scholar] [CrossRef]
- Ki, C.-W.C.; Kim, Y.-K. The Mechanism by Which Social Media Influencers Persuade Consumers: The Role of Consumers’ Desire to Mimic. Psychol. Mark. 2019, 36, 905–922. [Google Scholar] [CrossRef]
- Pan, X.; Rasouli, S.; Timmermans, H. Investigating Tourist Destination Choice: Effect of Destination Image from Social Network Members. Tour. Manag. 2021, 83, 104217. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, S.; Lin, Z. Capturing the Essence of Word-of-Mouth for Social Commerce: Assessing the Quality of Online e-Commerce Reviews by a Semi-Supervised Approach. Decis. Support Syst. 2013, 56, 211–222. [Google Scholar] [CrossRef]
- Lin, J.; Luo, Z.; Cheng, X.; Li, L. Understanding the Interplay of Social Commerce Affordances and Swift Guanxi: An Empirical Study. Inf. Manag. 2019, 56, 213–224. [Google Scholar] [CrossRef]
- Rosário, A.; Raimundo, R. Consumer Marketing Strategy and E-Commerce in the Last Decade: A Literature Review. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 3003–3024. [Google Scholar] [CrossRef]
- Lin, G.; Xu, W.; Li, Y.; Zhu, X. Return Policy Selection Analysis for Brands Considering MCN Click Farming and Customer Disappointment Aversion. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 1543–1563. [Google Scholar] [CrossRef]
- Brown, D.; Hayes, N. Influencer Marketing: Who Really Influences Your Customers? Elsevier/Butterworth-Heinemann: Amsterdam, The Netherlands; Oxford, UK, 2008; ISBN 978-0-7506-8600-6. [Google Scholar]
- Lou, C.; Yuan, S. Influencer Marketing: How Message Value and Credibility Affect Consumer Trust of Branded Content on Social Media. J. Interact. Advert. 2019, 19, 58–73. [Google Scholar] [CrossRef]
- Lv, Z.; Jin, Y.; Huang, J. How Do Sellers Use Live Chat to Influence Consumer Purchase Decision in China? Electron. Commer. Res. Appl. 2018, 28, 102–113. [Google Scholar] [CrossRef]
- Uzunoğlu, E.; Misci Kip, S. Brand Communication through Digital Influencers: Leveraging Blogger Engagement. Int. J. Inf. Manag. 2014, 34, 592–602. [Google Scholar] [CrossRef]
- Xu (Rinka), X.; Pratt, S. Social Media Influencers as Endorsers to Promote Travel Destinations: An Application of Self-Congruence Theory to the Chinese Generation Y. J. Travel Tour. Mark. 2018, 35, 958–972. [Google Scholar] [CrossRef]
- Wu, L.; Hitt, L.; Lou, B. Data Analytics, Innovation, and Firm Productivity. Manag. Sci. 2020, 66, 2017–2039. [Google Scholar] [CrossRef]
- Stubb, C.; Nyström, A.-G.; Colliander, J. Influencer Marketing: The Impact of Disclosing Sponsorship Compensation Justification on Sponsored Content Effectiveness. J. Commun. Manag. 2019, 23, 109–122. [Google Scholar] [CrossRef]
- Holbrook, M.B.; Hirschman, E.C. The Experiential Aspects of Consumption: Consumer Fantasies, Feelings, and Fun. J. Consum. Res. 1982, 9, 132–140. [Google Scholar] [CrossRef]
- Wu, M.; Liu, Y.; Chung, H.F.L.; Guo, S. When and How Mobile Payment Platform Complementors Matter in Cross-Border B2B e-Commerce Ecosystems? An Integration of Process and Modularization Analysis. J. Bus. Res. 2022, 139, 843–854. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, M.; Wang, Y. Why Do Audiences Choose to Keep Watching on Live Video Streaming Platforms? An Explanation of Dual Identification Framework. Comput. Hum. Behav. 2017, 75, 594–606. [Google Scholar] [CrossRef]
- Lim, S.; Cha, S.Y.; Park, C.; Lee, I.; Kim, J. Getting Closer and Experiencing Together: Antecedents and Consequences of Psychological Distance in Social Media-Enhanced Real-Time Streaming Video. Comput. Hum. Behav. 2012, 28, 1365–1378. [Google Scholar] [CrossRef]
- Hilvert-Bruce, Z.; Neill, J.T.; Sjöblom, M.; Hamari, J. Social Motivations of Live-Streaming Viewer Engagement on Twitch. Comput. Hum. Behav. 2018, 84, 58–67. [Google Scholar] [CrossRef]
- Gao, X.; Xu, X.-Y.; Tayyab, S.M.U.; Li, Q. How the Live Streaming Commerce Viewers Process the Persuasive Message: An ELM Perspective and the Moderating Effect of Mindfulness. Electron. Commer. Res. Appl. 2021, 49, 101087. [Google Scholar] [CrossRef]
- Chen, C.-C.; Lin, Y.-C. What Drives Live-Stream Usage Intention? The Perspectives of Flow, Entertainment, Social Interaction, and Endorsement. Telemat. Inform. 2018, 35, 293–303. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, N. Game Theoretic Analysis of Logistics Service Coordination in a Live-Streaming e-Commerce System. Electron. Commer. Res. 2023, 23, 1049–1087. [Google Scholar] [CrossRef]
- Wongkitrungrueng, A.; Assarut, N. The Role of Live Streaming in Building Consumer Trust and Engagement with Social Commerce Sellers. J. Bus. Res. 2020, 117, 543–556. [Google Scholar] [CrossRef]
- Sokolova, K.; Kefi, H. Instagram and YouTube Bloggers Promote It, Why Should I Buy? How Credibility and Parasocial Interaction Influence Purchase Intentions. J. Retail. Consum. Serv. 2020, 53, 101742. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, J.; Ding, Y.; Wang, H. The Magic of Danmaku: A Social Interaction Perspective of Gift Sending on Live Streaming Platforms. Electron. Commer. Res. Appl. 2019, 34, 100815. [Google Scholar] [CrossRef]
- Calder, B.J.; Malthouse, E.C.; Schaedel, U. An Experimental Study of the Relationship between Online Engagement and Advertising Effectiveness. J. Interact. Mark. 2009, 23, 321–331. [Google Scholar] [CrossRef]
- Anderson, E.W.; Fornell, C.; Lehmann, D.R. Customer Satisfaction, Market Share, and Profitability: Findings from Sweden. J. Mark. 1994, 58, 53–66. [Google Scholar] [CrossRef]
- Brakus, J.J.; Schmitt, B.H.; Zarantonello, L. Brand Experience: What Is It? How Is It Measured? Does It Affect Loyalty? J. Mark. 2009, 73, 52–68. [Google Scholar] [CrossRef]
- Rose, S.; Hair, N.; Clark, M. Online Customer Experience: A Review of the Business-to-Consumer Online Purchase Context. Int. J. Manag. Rev. 2011, 13, 24–39. [Google Scholar] [CrossRef]
- Hartmann, S.; Weiss, M.; Hoegl, M.; Carmeli, A. How Does an Emotional Culture of Joy Cultivate Team Resilience? A Sociocognitive Perspective. J. Organ. Behav. 2021, 42, 313–331. [Google Scholar] [CrossRef]
- Djafarova, E.; Rushworth, C. Exploring the Credibility of Online Celebrities’ Instagram Profiles in Influencing the Purchase Decisions of Young Female Users. Comput. Hum. Behav. 2017, 68, 1–7. [Google Scholar] [CrossRef]
- Shan, Y.; Chen, K.-J.; Lin, J.-S. When Social Media Influencers Endorse Brands: The Effects of Self-Influencer Congruence, Parasocial Identification, and Perceived Endorser Motive. Int. J. Advert. 2020, 39, 590–610. [Google Scholar] [CrossRef]
- Tang, J.C.; Venolia, G.; Inkpen, K.M. Meerkat and Periscope: I Stream, You Stream, Apps Stream for Live Streams. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 4770–4780. [Google Scholar]
- Guo, L.; Hu, X.; Lu, J.; Ma, L. Effects of Customer Trust on Engagement in Live Streaming Commerce: Mediating Role of Swift Guanxi. Internet Res. 2021, 31, 1718–1744. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N.; Kalinić, Z.; Liébana-Cabanillas, F.J. Assessing Determinants Influencing Continued Use of Live Streaming Services: An Extended Perceived Value Theory of Streaming Addiction. Expert Syst. Appl. 2021, 168, 114241. [Google Scholar] [CrossRef]
- Park, H.J.; Lin, L.M. The Effects of Match-Ups on the Consumer Attitudes toward Internet Celebrities and Their Live Streaming Contents in the Context of Product Endorsement. J. Retail. Consum. Serv. 2020, 52, 101934. [Google Scholar] [CrossRef]
- Xu, P.; Cui, B.; Lyu, B. Influence of Streamer’s Social Capital on Purchase Intention in Live Streaming E-Commerce. Front. Psychol. 2022, 12, 748172. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Li, Y.; Xu, Y.; Zeng, K. How Live Streaming Features Impact Consumers’ Purchase Intention in the Context of Cross-Border E-Commerce? A Research Based on SOR Theory. Front. Psychol. 2021, 12, 767876. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.R. Behind the Streams: The Off-Camera Labour of Game Live Streaming. Games Cult. 2021, 16, 1001–1020. [Google Scholar] [CrossRef]
- Hsin Chang, H.; Wen Chen, S. The Impact of Online Store Environment Cues on Purchase Intention: Trust and Perceived Risk as a Mediator. Online Inf. Rev. 2008, 32, 818–841. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Chen, M.-C.; Keng, C.-J. Measuring Online Live Streaming of Perceived Servicescape: Scale Development and Validation on Behavior Outcome. Internet Res. 2020, 30, 737–762. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, F.; Wang, G.A.; Luo, C. The Impact of Live Video Streaming on Online Purchase Intention. Serv. Ind. J. 2020, 40, 656–681. [Google Scholar] [CrossRef]
- Martins, J.; Costa, C.; Oliveira, T.; Gonçalves, R.; Branco, F. How Smartphone Advertising Influences Consumers’ Purchase Intention. J. Bus. Res. 2019, 94, 378–387. [Google Scholar] [CrossRef]
- Xu, X.; Huang, D.; Shang, X. Social Presence or Physical Presence? Determinants of Purchasing Behaviour in Tourism Live-Streamed Shopping. Tour. Manag. Perspect. 2021, 40, 100917. [Google Scholar] [CrossRef]
- Gerlich, M. The Power of Virtual Influencers: Impact on Consumer Behaviour and Attitudes in the Age of AI. Adm. Sci. 2023, 13, 178. [Google Scholar] [CrossRef]
- Chung, S.; Cho, H. Fostering Parasocial Relationships with Celebrities on Social Media: Implications for Celebrity Endorsement. Psychol. Mark. 2017, 34, 481–495. [Google Scholar] [CrossRef]
- Luo, H.; Cheng, S.; Zhou, W.; Yu, S.; Lin, X. A Study on the Impact of Linguistic Persuasive Styles on the Sales Volume of Live Streaming Products in Social E-Commerce Environment. Mathematics 2021, 9, 1576. [Google Scholar] [CrossRef]
- Giertz, J.N.; Weiger, W.H.; Törhönen, M.; Hamari, J. Content versus Community Focus in Live Streaming Services: How to Drive Engagement in Synchronous Social Media. J. Serv. Manag. 2021, 33, 33–58. [Google Scholar] [CrossRef]
- Gerlich, M. The Power of Personal Connections in Micro-Influencer Marketing: A Study on Consumer Behaviour and the Impact of Micro-Influencers. Transnatl. Mark. J. 2023, 11, 131–152. [Google Scholar] [CrossRef]
- Taillon, B.J.; Mueller, S.M.; Kowalczyk, C.M.; Jones, D.N. Understanding the Relationships between Social Media Influencers and Their Followers: The Moderating Role of Closeness. J. Prod. Brand Manag. 2020, 29, 767–782. [Google Scholar] [CrossRef]
- Prentice, C.; Han, X.Y.; Hua, L.-L.; Hu, L. The Influence of Identity-Driven Customer Engagement on Purchase Intention. J. Retail. Consum. Serv. 2019, 47, 339–347. [Google Scholar] [CrossRef]
- Chang, H.-H.; Sokol, D. How Incumbents Respond to Competition from Innovative Disruptors in the Sharing Economy—The Impact of Airbnb on Hotel Performance. Strateg. Manag. J. 2020, 43, 425–446. [Google Scholar] [CrossRef]
- Bidmon, S. How Does Attachment Style Influence the Brand Attachment—Brand Trust and Brand Loyalty Chain in Adolescents? Int. J. Advert. 2017, 36, 164–189. [Google Scholar] [CrossRef]
- Guo, L. Cross-Border e-Commerce Platform for Commodity Automatic Pricing Model Based on Deep Learning. Electron. Commer. Res. 2022, 22, 1–20. [Google Scholar] [CrossRef]
- Hu, M.; Chaudhry, S.S. Enhancing Consumer Engagement in E-Commerce Live Streaming via Relational Bonds. Internet Res. 2020, 30, 1019–1041. [Google Scholar] [CrossRef]
- Thomson, M.; MacInnis, D.J.; Whan Park, C. The Ties That Bind: Measuring the Strength of Consumers’ Emotional Attachments to Brands. J. Consum. Psychol. 2005, 15, 77–91. [Google Scholar] [CrossRef]
- Lin, Y.; Yao, D.; Chen, X. Happiness Begets Money: Emotion and Engagement in Live Streaming. J. Mark. Res. 2021, 58, 417–438. [Google Scholar] [CrossRef]
- Dwayne Ball, A.; Tasaki, L.H. The Role and Measurement of Attachment in Consumer Behavior. J. Consum. Psychol. 1992, 1, 155–172. [Google Scholar] [CrossRef]
- Doney, P.M.; Cannon, J.P. An Examination of the Nature of Trust in Buyer-Seller Relationships. J. Mark. 1997, 61, 35–51. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Cai, J. How Attachment Affects User Stickiness on Live Streaming Platforms: A Socio-Technical Approach Perspective. J. Retail. Consum. Serv. 2021, 60, 102478. [Google Scholar] [CrossRef]
- Reinikainen, H.; Munnukka, J.; Maity, D.; Luoma-aho, V. ‘You Really Are a Great Big Sister’—Parasocial Relationships, Credibility, and the Moderating Role of Audience Comments in Influencer Marketing. J. Mark. Manag. 2020, 36, 279–298. [Google Scholar] [CrossRef]
- Sun, Y.; Shao, X.; Li, X.; Guo, Y.; Nie, K. A 2020 Perspective on “How Live Streaming Influences Purchase Intentions in Social Commerce: An IT Affordance Perspective”. Electron. Commer. Res. Appl. 2020, 40, 100958. [Google Scholar] [CrossRef]
- Sun, Y.; Shao, X.; Li, X.; Guo, Y.; Nie, K. How Live Streaming Influences Purchase Intentions in Social Commerce: An IT Affordance Perspective. Electron. Commer. Res. Appl. 2019, 37, 100886. [Google Scholar] [CrossRef]
- AlAnezi, M.; Almutairy, M. Influencer Engagement Rate under Scalable Machine Learning Approaches. In Social Computing and Social Media: Applications in Marketing, Learning, and Health; Meiselwitz, G., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 3–14. [Google Scholar]
- Mael, F.; Ashforth, B.E. Alumni and Their Alma Mater: A Partial Test of the Reformulated Model of Organizational Identification. J. Organ. Behav. 1992, 13, 103–123. [Google Scholar] [CrossRef]
- Wohn, D.Y.; Freeman, G. Live Streaming, Playing, and Money Spending Behaviors in ESports. Games Cult. 2020, 15, 73–88. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Bentler, P.M. Some Contributions to Efficient Statistics in Structural Models: Specification and Estimation of Moment Structures. Psychometrika 1983, 48, 493–517. [Google Scholar] [CrossRef]
- MacKinnon, D.P.; Krull, J.L.; Lockwood, C.M. Equivalence of the Mediation, Confounding and Suppression Effect. Prev. Sci. 2000, 1, 173–181. [Google Scholar] [CrossRef]
- MacKinnon, D.P.; Lockwood, C.M.; Williams, J. Confidence Limits for the Indirect Effect: Distribution of the Product and Resampling Methods. Multivar. Behav. Res. 2004, 39, 99–128. [Google Scholar] [CrossRef]
Construct | Item | Factor Loading | Cronbach’s Alpha | Composite Reliability (CR) | Convergence Validity (AVE) |
---|---|---|---|---|---|
Customer Experience (CE) | CE1 | 0.742 | 0.765 | 0.766 | 0.621 |
CE2 | 0.835 | ||||
Influencer Trust (TR) | TR1 | 0.642 | 0.724 | 0.737 | 0.483 |
TR2 | 0.696 | ||||
TR3 | 0.743 | ||||
Influencer Attachment (AT) | AT1 | 0.739 | 0.839 | 0.841 | 0.516 |
AT2 | 0.735 | ||||
AT3 | 0.746 | ||||
AT4 | 0.739 | ||||
AT5 | 0.637 | ||||
Customer Purchase Intention (CPI) | IN1 | 0.676 | 0.776 | 0.785 | 0.55 |
IN2 | 0.775 | ||||
IN3 | 0.768 |
Construct | CE | TR | AT | CPI |
---|---|---|---|---|
CE | 0.788 | |||
TR | 0.661 | 0.695 | ||
AT | 0.446 | 0.583 | 0.718 | |
CPI | 0.452 | 0.563 | 0.589 | 0.742 |
Fitting Index | χ2/df | GFI | AGFI | CFI | NFI | RMSEA | TLI |
---|---|---|---|---|---|---|---|
Recommended criteria | <3 | >0.90 | >0.80 | >0.90 | >0.90 | <0.08 | >0.90 |
Actual value | 2.51 | 0.94 | 0.908 | 0.952 | 0.931 | 0.067 | 0.937 |
Hypothesis | Path | Unstd. | S.E. | Z-Value | Sig. | Std. | Results |
---|---|---|---|---|---|---|---|
H1 | CE→CPI | 0.100 | 0.051 | 1.961 | 0.05 | 0.103 | Approved |
H2 | CE→TR | 0.566 | 0.030 | 18.684 | *** | 0.661 | Approved |
H3 | TR→CPI | 0.320 | 0.056 | 5.708 | *** | 0.281 | Approved |
H5 | CE→AT | 0.516 | 0.049 | 10.551 | *** | 0.446 | Approved |
H6 | AT→CPI | 0.336 | 0.035 | 9.673 | *** | 0.399 | Approved |
Path Relationship | Point Estimate | Product of Coefficient | Bootstrapping 1000 Times Bias-Corrected 95% CI | ||||
---|---|---|---|---|---|---|---|
SE | Z | Lower | Upper | p | |||
Mediating effect, Direct effect, and Total effect test | |||||||
TRIE | CE→TR→CPI | 0.181 | 0.048 | 3.771 | 0.093 | 0.278 | 0.001 |
ATIE | CE→AT→CPI | 0.173 | 0.031 | 5.581 | 0.116 | 0.239 | 0.002 |
DE | CE→CPI | 0.1 | 0.051 | 1.961 | 0.005 | 0.195 | 0.050 |
TIE | Total indirect effect | 0.354 | 0.045 | 7.867 | 0.273 | 0.453 | 0.001 |
TE | Total effect | 0.454 | 0.048 | 9.458 | 0.366 | 0.559 | 0.002 |
Comparison of mediating effects | |||||||
TRATdiff | TR VS. AT | 0.008 | 0.066 | 0.121 | −0.133 | 0.124 | 0.926 |
Proportion of intermediary effect | |||||||
P1 | TRIE/TIE | 0.511 | 0.095 | 5.379 | 0.294 | 0.669 | 0.002 |
P2 | ATIE/TIE | 0.489 | 0.095 | 5.147 | 0.331 | 0.706 | 0.002 |
P3 | TIE/TE | 0.779 | 0.114 | 6.833 | 0.595 | 1.034 | 0.001 |
Li 0, Luo 1, Both 2 Median (P25, P75) | Kruskal–Wallis Test (H) | p | |||
---|---|---|---|---|---|
0.0 (n = 215) | 1.0 (n = 30) | 2.0 (n = 127) | |||
Customer Purchase Intention | 5.667 (5.0, 6.0) | 5.500 (4.3, 6.3) | 6.000 (5.3, 6.3) | 10.446 | 0.005 ** |
Influencer Attachment | 4.600 (3.6, 5.4) | 4.900 (4.2, 6.0) | 5.000 (4.0, 5.8) | 10.511 | 0.005 ** |
Influencer Trust | 5.667 (5.0, 6.0) | 5.667 (5.3, 6.3) | 5.667 (5.0, 6.3) | 2.455 | 0.293 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, N.; Yang, Y. The Role of Influencers in Live Streaming E-Commerce: Influencer Trust, Attachment, and Consumer Purchase Intention. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 1601-1618. https://doi.org/10.3390/jtaer18030081
Chen N, Yang Y. The Role of Influencers in Live Streaming E-Commerce: Influencer Trust, Attachment, and Consumer Purchase Intention. Journal of Theoretical and Applied Electronic Commerce Research. 2023; 18(3):1601-1618. https://doi.org/10.3390/jtaer18030081
Chicago/Turabian StyleChen, Nan, and Yunpeng Yang. 2023. "The Role of Influencers in Live Streaming E-Commerce: Influencer Trust, Attachment, and Consumer Purchase Intention" Journal of Theoretical and Applied Electronic Commerce Research 18, no. 3: 1601-1618. https://doi.org/10.3390/jtaer18030081
APA StyleChen, N., & Yang, Y. (2023). The Role of Influencers in Live Streaming E-Commerce: Influencer Trust, Attachment, and Consumer Purchase Intention. Journal of Theoretical and Applied Electronic Commerce Research, 18(3), 1601-1618. https://doi.org/10.3390/jtaer18030081