Business and Customer-Based Chatbot Activities: The Role of Customer Satisfaction in Online Purchase Intention and Intention to Reuse Chatbots
Abstract
:1. Introduction
2. Theoretical Background and Hypotheses Development
2.1. Chatbot Marketing Efforts
2.2. Chatbot Communication Quality
2.3. Satisfaction with Chatbot Usage
2.4. Motivation for Chatbot Usage
2.5. Purchase and Reuse Intention
3. Methodology
4. Analysis and Results
4.1. Measurement Model (First-Order Constructs)
4.2. Measurement Model (Second-Order Constructs)
4.3. Structural Model
5. Conclusions and Implication
5.1. Conclusions
5.2. Theoretical Implications
5.3. Practical Implications
6. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheth, J.N.; Sisodia, R.S.; Sharma, A. The antecedents and consequences of customer-centric marketing. J. Acad. Mark. Sci. 2000, 28, 55–66. [Google Scholar] [CrossRef]
- Zhao, J.; Fang, S.; Jin, P. Modeling and Quantifying User Acceptance of Personalized Business Modes Based on TAM, Trust and Attitude. Sustainability 2018, 10, 356. [Google Scholar] [CrossRef]
- Yao, S. Design of Brand Business Model Based on Big Data and Internet of Things Technology Application. Comput. Intell. Neurosc. 2022, 2022, 9189805. [Google Scholar] [CrossRef] [PubMed]
- Del Vecchio, P.; Mele, G.; Passiante, G.; Vrontis, D.; Fanuli, C. Detecting Customers Knowledge from Social Media Big Data: Toward an Integrated Methodological Framework Based on Netnography and Business Analytics. J. Knowl. Manag. 2020, 24, 799–821. [Google Scholar] [CrossRef]
- Rrustemi, V.; Podvorica, G.; Jusufi, G. Digital Marketing Communication in Developing Countries. LeXonomica 2020, 12, 243–260. [Google Scholar] [CrossRef]
- YachouAityassine, F.L.; Al-Ajlouni, M.M.; Mohammad, A. The Effect of Digital Marketing Strategy on Customer and Organizational Outcomes. Mark. Manag. Innov. 2022, 13, 45–54. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A.; et al. Artificial Intelligence (AI): Multidisciplinary Perspectives on Emerging Challenges, Opportunities, and Agenda for Research, Practice and Policy. Int. J. Inf. Manage. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Kim, W.; Ryoo, Y. Hypocrisy Induction: Using Chatbots to Promote COVID-19 Social Distancing. Cyberpsychology Behav. Soc. Netw. 2022, 25, 27–36. [Google Scholar] [CrossRef]
- Van den Broeck, E.; Zarouali, B.; Poels, K. Chatbot advertising effectiveness: When does the message get through? Comput. Hum. Behav. 2019, 98, 150–157. [Google Scholar] [CrossRef]
- Mohamad Suhaili, S.; Salim, N.; Jambli, M. Service chatbots: A systematic review. Expert Syst. Appl. 2021, 184, 115461. [Google Scholar] [CrossRef]
- Artasanchez, A.; Joshi, P. Artificial Intelligence with Python, 2nd ed.; Packt Publishing: Birmingham, UK, 2020. [Google Scholar]
- Song, X.; Yang, S.; Huang, Z.; Huang, T. The Application of Artificial Intelligence in Electronic Commerce. J. Phys. Conf. Ser. 2019, 1302, 032030. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, F.; Chen, T.; Pan, L.; Beliakov, G.; Wu, J. A Brief Survey of Machine Learning and Deep Learning Techniques for E-Commerce Research. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 2188–2216. [Google Scholar] [CrossRef]
- Juniper Research. Retail Spend over Chatbots to Reach $12bn Globally in 2023. 2023. Available online: https://www.juniperresearch.com/press/retail-spend-over-chatbots-to-reach-12bn-globally/ (accessed on 1 October 2024).
- Gartner. Gartner Predicts Chatbots Will Become a Primary Customer Service Channel Within Five Years. 2022. Available online: https://www.gartner.com/en/newsroom/press-releases/2022-07-27-gartner-predicts-chatbots-will-become-a-primary-customer-service-channel-within-five-years (accessed on 25 March 2023).
- Invesp. Chatbots in Customer Service—Statistics and Trends [Infographic]. 2022. Available online: https://www.invespcro.com/blog/chatbots-customer-service/ (accessed on 15 April 2023).
- Landbot. Conversational AI Statistics: NLP Chatbots in 2020. Capgemini Research Institute. 2019. Available online: https://landbot.io/blog/conversational-ai-statistics (accessed on 25 March 2023).
- Tidio. The Future of Chatbots: 80+ Chatbot Statistics for 2025. 2024. Available online: https://www.tidio.com/blog/chatbot-statistics/ (accessed on 1 October 2024).
- Businesswire. Chatbots Can Effectively Resolve 65% of Customer Inquiries When Applied to the E-commerce Industry. 2019. Available online: https://www.businesswire.com/news/home/20190606005058/en/Chatbots-Can-Effectively-Resolve-65-of-Customer-Inquiries-When-Applied-to-the-E-commerce-Industry (accessed on 25 March 2023).
- Roy, R.; Naidoo, V. Enhancing chatbot effectiveness: The role of anthropomorphic conversational styles and time orientation. J. Bus. Res. 2021, 126, 23–34. [Google Scholar] [CrossRef]
- Ho, S.P.S.; Chow, M.Y.C. The Role of Artificial Intelligence in Consumers’ Brand Preference for Retail Banks in Hong Kong. J. Financ. Serv. Mark. 2024, 29, 292–305. [Google Scholar] [CrossRef]
- Yuan, C.; Wang, S.; Liu, Y. AI Service Impacts on Brand Image and Customer Equity: Empirical Evidence from China. J. Brand Manag. 2023, 30, 61–76. [Google Scholar] [CrossRef]
- Tsai, W.; Liu, Y.; Chuan, C. How chatbots’ social presence communication enhances consumer engagement: The mediating role of parasocial interaction and dialogue. J. Res. Interact. Mark. 2021, 15, 460–482. [Google Scholar] [CrossRef]
- Yen, C.; Chiang, M. Trust me, if you can: A study on the factors that influence consumers’ purchase intention triggered by chatbots based on brain image evidence and self-reported assessments. Behav. Inf. Technol. 2020, 40, 1177–1194. [Google Scholar] [CrossRef]
- Lo Presti, L.; Maggiore, G.; Marino, V. The role of the chatbot on customer purchase intention: Towards digital relational sales. Ital. J. Mark. 2021, 2021, 165–188. [Google Scholar] [CrossRef]
- Hsiao, K.; Chen, C. What drives continuance intention to use a food-ordering chatbot? An examination of trust and satisfaction. Libr. Hi Tech 2021, 40, 929–946. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, J.; Chi, R.; Deng, G. Enhancing customer satisfaction with chatbots: The influence of anthropomorphic communication styles and anthropomorphised roles. Nankai Bus. Rev. Int. 2022, 14, 249–271. [Google Scholar] [CrossRef]
- Cheng, X.; Bao, Y.; Zarifis, A.; Gong, W.; Mou, J. Exploring consumers’ response to text-based chatbots in e-commerce: The moderating role of task complexity and chatbot disclosure. Internet Res. 2021, 32, 496–517. [Google Scholar] [CrossRef]
- Lei, S.I.; Shen, H.; Ye, S.A. Comparison Between Chatbot and Human Service: Customer Perception and Reuse Intention. Int. J. Contemp. Hosp. Manag. 2021, 33, 3977–3995. [Google Scholar] [CrossRef]
- Meyer-Waarden, L.; Pavone, G.; Poocharoentou, T.; Prayatsup, P.; Ratinaud, M.; Tison, A.; Torné, S. How Service Quality Influences Customer Acceptance and Usage of Chatbots? J. Serv. Manag. Res. 2020, 4, 35–51. [Google Scholar] [CrossRef]
- Sands, S.; Ferraro, C.; Campbell, C.; Tsao, H.-Y. Managing the Human–Chatbot Divide: How Service Scripts Influence Service Experience. J. Serv. Manag. 2020, 32, 246–264. [Google Scholar] [CrossRef]
- Skjuve, M.; Følstad, A.; Fostervold, K.I.; Brandtzaeg, P.B. My chatbot companion—A study of human-chatbot relationships. Int. J. Hum.-Comput. Stud. 2021, 149, 102601. [Google Scholar] [CrossRef]
- Kim, A.J.; Ko, E. Do Social Media Marketing Activities Enhance Customer Equity? An Empirical Study of Luxury Fashion Brand. J. Bus. Res. 2012, 65, 1480–1486. [Google Scholar] [CrossRef]
- Godey, B.; Manthiou, A.; Pederzoli, D.; Rokka, J.; Aiello, G.; Donvito, R.; Singh, R. Social Media Marketing Efforts of Luxury Brands: Influence on Brand Equity and Consumer Behavior. J. Bus. Res. 2016, 69, 5833–5841. [Google Scholar] [CrossRef]
- Chung, M.; Ko, E.; Joung, H.; Kim, S.J. Chatbot E-Service and Customer Satisfaction Regarding Luxury Brands. J. Bus. Res. 2020, 117, 587–595. [Google Scholar] [CrossRef]
- Cheng, Y.; Jiang, H. Customer–Brand Relationship in the Era of Artificial Intelligence: Understanding the Role of Chatbot Marketing Efforts. J. Prod. Brand Manag. 2021, 31, 252–264. [Google Scholar] [CrossRef]
- Markiewicz, T.; Zheng, J. Getting Started with Artificial Intelligence, 1st ed.; O’Reilly Media: Sebastopol, CA, USA, 2018. [Google Scholar]
- Drift. The 2018 State of Chatbots Report. 2018. Available online: https://www.slideshare.net/DrifttHQ/the-2018-state-of-chatbots-report (accessed on 22 October 2023).
- Fox, J.; Gambino, A. Relationship development with humanoid social robots: Appliying interpersonal theories to human-robot interaction. Cyberpsychol. Behav. Soc. Netw. 2021, 24, 294–299. [Google Scholar] [CrossRef]
- Hänninen, N.; Karjaluoto, H. The Effect of Marketing Communication on Business Relationship Loyalty. Mark. Intell. Plan. 2017, 35, 458–472. [Google Scholar] [CrossRef]
- Mohr, J.J.; Sohi, R.S. Communication Flows in Distribution Channels: Impact on Assessments of Communication Quality and Satisfaction. J. Retail. 1995, 71, 393–415. [Google Scholar] [CrossRef]
- Edwards, C.; Edwards, A.; Spence, P.R.; Shelton, A.K. Is That a Bot Running the Social Media Feed? Testing the Differences in Perceptions of Communication Quality for a Human Agent and a Bot Agent on Twitter. Comput. Hum. Behav. 2014, 33, 372–376. [Google Scholar] [CrossRef]
- Yi, Y.; Nataraajan, R. Customer Satisfaction in Asia. Psychol. Mark. 2018, 35, 387–391. [Google Scholar] [CrossRef]
- Hassan, R.S.; Nawaz, A.; Lashari, M.N.; Zafar, F. Effect of Customer Relationship Management on Customer Satisfaction. Procedia Econ. Financ. 2015, 23, 563–567. [Google Scholar] [CrossRef]
- Oh, J.C.; Yoon, S.J.; Park, B.I. A structural approach to examine the quality attributes of e-shopping malls using the Kano model. Asia Pac. J. Public Health 2012, 24, 305–327. [Google Scholar] [CrossRef]
- Mero, J. The effects of two-way communication and chat service usage on consumer attitudes in the e-commerce retailing sector. Electron. Mark. 2018, 28, 205–217. [Google Scholar] [CrossRef]
- Zhang, J.J.; Følstad, A.; Bjørkli, C.A. Organizational factors affecting successful implementation of chatbots for customer service. J. Internet Commer. 2023, 22, 122–156. [Google Scholar] [CrossRef]
- Moriuchi, E.; Landers, V.M.; Colton, D.; Hair, N. Engagement with chatbots versus augmented reality interactive technology in e-commerce. J. Strateg. Mark. 2020, 29, 375–389. [Google Scholar] [CrossRef]
- Trivedi, J. Examining the customer experience of using banking Chatbots and its impact on brand love: The moderating role of perceived risk. J. Internet Commer. 2019, 18, 91–111. [Google Scholar] [CrossRef]
- Brandtzaeg, P.B.; Følstad, A. Why People Use Chatbots. In Proceedings of the Internet Science: 4th International Conference, Thessaloniki, Greece, 22–24 November 2017; pp. 377–392. [Google Scholar] [CrossRef]
- Eren, B.A. Determinants of Customer Satisfaction in Chatbot Use: Evidence from a Banking Application in Turkey. Int. J. Bank Mark. 2021, 39, 294–311. [Google Scholar] [CrossRef]
- Xie, T.; Pentina, I. Attachment Theory as a Framework to Understand Relationships with Social Chatbots: A Case Study of Replika. In Proceedings of the 55th Hawaii International Conference on System Sciences, Virtual, 4–7 January 2022; University of Hawaii: Honolulu, HI, USA, 2022; pp. 2046–2055. [Google Scholar]
- Skjuve, M.; Følstad, A.; Fostervold, K.I.; Brandtzaeg, P.B. A Longitudinal Study of Human–Chatbot Relationships. Int. J. Hum.-Comput. Stud. 2022, 168, 102903. [Google Scholar] [CrossRef]
- Chen, J.V.; Thi Le, H.; Tran, S.T.T. Understanding Automated Conversational Agent as a Decision Aid: Matching Agent’s Conversation with Customer’s Shopping Task. Internet Res. 2021, 31, 1376–1404. [Google Scholar] [CrossRef]
- Epley, N.; Waytz, A.; Cacioppo, J.T. On Seeing Human: A Three-Factor Theory of Anthropomorphism. Psychol. Rev. 2007, 114, 864–886. [Google Scholar] [CrossRef]
- Crolic, C.; Thomaz, F.; Hadi, R.; Stephen, A.T. Blame the Bot: Anthropomorphism and Anger in Customer–Chatbot Interactions. J. Mark. 2022, 86, 132–148. [Google Scholar] [CrossRef]
- Kim, W.B.; Hur, H.J. What Makes People Feel Empathy for AI Chatbots? Assessing the Role of Competence and Warmth. Int. J. Hum.–Comput. Interact. 2024, 40, 4674–4687. [Google Scholar] [CrossRef]
- Nguyen, M.; Casper Ferm, L.-E.; Quach, S.; Pontes, N.; Thaichon, P. Chatbots in Frontline Services and Customer Experience: An Anthropomorphism Perspective. Psychol. Mark. 2023, 40, 2201–2225. [Google Scholar] [CrossRef]
- Han, M.C. The Impact of Anthropomorphism on Consumers’ Purchase Decision in Chatbot Commerce. J. Internet Commer. 2021, 20, 46–65. [Google Scholar] [CrossRef]
- Rietz, T.; Benke, I.; Maedche, A. The impact of anthropomorphic and functional chatbot design features in enterprise collaboration systems on user acceptance. In Proceedings of the 14th International Conference on Wirtschaftsinformatik, Siegen, Germany, 24–27 February 2019; University of Siegen: Siegen, Germany, 2019; pp. 1642–1656. [Google Scholar]
- Sheehan, B.; Jin, H.S.; Gottlieb, U. Customer service chatbots: Anthropomorphism and adoption. J. Bus. Res. 2020, 115, 14–24. [Google Scholar] [CrossRef]
- Mostafa, R.B.; Lages, C.R.; Shaalan, A. The Dark Side of Virtual Agents: Ohhh No! Int. J. Inf. Manag. 2023, 75, 102721. [Google Scholar] [CrossRef]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Moslehpour, M.; Wong, W.-K.; Lin, Y.H.; Le Huyen Nguyen, T. Top Purchase Intention Priorities of Vietnamese Low Cost Carrier Passengers: Expectations and Satisfaction. Eurasian Bus. Rev. 2018, 8, 371–389. [Google Scholar] [CrossRef]
- Dhingra, S.; Gupta, S.; Bhatt, R. A study of relationship among service quality of E-commerce websites, customer satisfaction, and purchase intention. Int. J. e-Bus. Res. 2020, 16, 42–59. [Google Scholar] [CrossRef]
- Hu, Y. Linking Perceived Value, Customer Satisfaction, and Purchase Intention in E-Commerce Settings. In Advances in Computer Science, Intelligent System and Environment; Springer: Berlin/Heidelberg, Germany, 2011; pp. 623–628. [Google Scholar] [CrossRef]
- Filieri, R.; McLeay, F.; Tsui, B. Antecedents of Travellers’ Satisfaction and Purchase Intention from Social Commerce Websites. In Information and Communication Technologies in Tourism 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 517–528. [Google Scholar] [CrossRef]
- Roudposhti, V.M.; Nilashi, M.; Mardani, A.; Streimikiene, D.; Samad, S.; Ibrahim, O. A new model for customer purchase intention in e-commerce recommendation agents. J. Int. Stud. 2018, 11, 237–253. [Google Scholar] [CrossRef]
- Hossain, M.S.; Zhou, X. Impact of m-payments on purchase intention and customer satisfaction: Perceived flow as mediator. Int. J. Sci. Bus. 2018, 2, 503–517. [Google Scholar]
- Khatoon, S.; Zhengliang, X.; Hussain, H. The Mediating Effect of Customer Satisfaction on the Relationship Between Electronic Banking Service Quality and Customer Purchase Intention: Evidence From the Qatar Banking Sector. SAGE Open. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Harasis, A.A.; Qureshi, M.I.; Rasli, A. Development of research continuous usage intention of e-commerce. A systematic review of literature from 2009 to 2015. Int. J. Eng. 2018, 7, 73–78. [Google Scholar] [CrossRef]
- Bhattacherjee, A. Understanding information systems continuance: An expectation-confirmation model. MIS Q. 2001, 25, 351–370. [Google Scholar] [CrossRef]
- Oliver, R.L. A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions. J. Mark. Res. 1980, 17, 460–469. [Google Scholar] [CrossRef]
- Liao, C.; Palvia, P.; Chen, J.L. Information technology adoption behavior life cycle: Toward a Technology Continuance Theory (TCT). Int. J. Inf. Manag. 2009, 29, 309–320. [Google Scholar] [CrossRef]
- Tsai, H.-T.; Chien, J.-L.; Tsai, M.-T. The influences of system usability and user satisfaction on continued Internet banking services usage intention: Empirical evidence from Taiwan. Electron. Commer. Res. 2014, 14, 137–169. [Google Scholar] [CrossRef]
- Rieke, T. The Relationship Between Motives for Using a Chatbot and Satisfaction with Chatbot Characteristics in the Portuguese Millennial Population: An Exploratory Study. Master Thesis, University of Porto, Porto, Portugal, 2018. [Google Scholar]
- Hsiao, C.H.; Chang, J.J.; Tang, K.Y. Exploring the influential factors in continuance usage of mobile social Apps: Satisfaction, habit, and customer value perspectives. Telemat. Inform. 2016, 33, 342–355. [Google Scholar] [CrossRef]
- Kim, C.; Mirusmonov, M.; Lee, I. An empirical examination of factors influencing the intention to use mobile payment. Comput. Hum. Behav. 2010, 26, 310–322. [Google Scholar] [CrossRef]
- Boomsma, A.; Hoogland, J.J. The Robustness of LISREL Modeling Revisited; Cudeck, R., Sörbom, D., Toit, S.D., Eds.; Scientific Software International: Chicago, IL, USA, 2001; pp. 139–168. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 3rd ed.; The Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Similarweb. Top Websites Ranking. 2023. Available online: https://www.similarweb.com/top-websites/turkey/e-commerce-and-shopping/ (accessed on 3 October 2024).
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 8th ed.; Cengage Learning EMEA: Hampshire, UK, 2019. [Google Scholar]
- O’Brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Schumacker, R.E.; Lomax, R.G. A Beginner’s Guide to Structural Equation Modeling, 4th ed.; Psychology Press: Lodi, NJ, USA, 2004. [Google Scholar]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Bollen, K.A.; Stine, R. Direct and Indirect Effects: Classical and Bootstrap Estimates of Variability. Sociol. Methodol. 1990, 20, 115–140. [Google Scholar] [CrossRef]
- Naqvi, M.H.A.; Hongyu, Z.; Naqvi, M.H.; Kun, L. Impact of Service Agents on Customer Satisfaction and Loyalty: Mediating Role of Chatbots. J. Model. Manag. 2023, 19, 470–491. [Google Scholar] [CrossRef]
- Jiang, H.; Cheng, Y.; Yang, J.; Gao, S. AI-Powered Chatbot Communication with Customers: Dialogic Interactions, Satisfaction, Engagement, and Customer Behavior. Comput. Hum. Behav. 2022, 134, 107329. [Google Scholar] [CrossRef]
- Lee, M.; Park, J.-S. Do Parasocial Relationships and the Quality of Communication with AI Shopping Chatbots Determine Middle-Aged Women Consumers’ Continuance Usage Intentions? J. Consum. Behav. 2022, 21, 842–854. [Google Scholar] [CrossRef]
- Chang, J.Y.-S.; Cheah, J.-H.; Lim, X.-J.; Morrison, A.M. One Pie, Many Recipes: The Role of Artificial Intelligence Chatbots in Influencing Malaysian Solo Traveler Purchase Intentions. Tour. Manag. Perspect. 2023, 49, 101191. [Google Scholar] [CrossRef]
- Pereira, T.; Limberger, P.F.; Ardigó, C.M. The Moderating Effect of the Need for Interaction with a Service Employee on Purchase Intention in Chatbots. Telemat. Inform. Rep. 2021, 1–4, 100003. [Google Scholar] [CrossRef]
- Silva, F.A.; Shojaei, A.S.; Barbosa, B. Chatbot-Based Services: A Study on Customers’ Reuse Intention. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 457–474. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, R.; Pu, C. “I Am Chatbot, Your Virtual Mental Health Adviser.” What Drives Citizens’ Satisfaction and Continuance Intention toward Mental Health Chatbots during the COVID-19 Pandemic? An Empirical Study in China. Digit. Health 2022, 8, 457–474. [Google Scholar] [CrossRef]
- Ashfaq, M.; Yun, J.; Yu, S.; Loureiro, S.M. I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents. Telemat. Inform. 2020, 54, 101473. [Google Scholar] [CrossRef]
- Wang, C.-H.; Wu, C.-L. Bridging the Digital Divide: The Smart TV as a Platform for Digital Literacy among the Elderly. Behav. Inf. Technol. 2022, 41, 2546–2559. [Google Scholar] [CrossRef]
- Tidio. Chatbot vs. Live Chat Explained: Which Is Better in 2024? 2024. Available online: https://www.tidio.com/blog/chatbot-vs-live-chat/ (accessed on 11 September 2024).
- Capgemini. Imagining A New Era of Customer Experience with Generative AI. 2023. Available online: https://prod.ucwe.capgemini.com/wp-content/uploads/2023/07/2023-07-27_Gen-AI-for-CX-POV_Opt1_v3_MD-1.pdf (accessed on 16 December 2023).
Frequency (n) | Percent (%) | |
---|---|---|
Gender | ||
Female | 122 | 58.1 |
Male | 85 | 40.5 |
Rather not say | 3 | 1.4 |
Total | 210 | 100.0 |
Age | ||
18–24 | 107 | 51.0 |
25–34 | 90 | 42.9 |
35–44 | 7 | 3.3 |
45+ | 6 | 2.9 |
Total | 210 | 100.0 |
Marital Status | ||
Married | 31 | 14.8 |
Single | 179 | 85.2 |
Total | 210 | 100.0 |
Education Level | ||
High school graduate | 12 | 5.7 |
Bachelor’s degree | 144 | 68.6 |
Master’s or Doctorate degree | 54 | 25.7 |
Total | 210 | 100.0 |
Internet Usage Time (Daily) | ||
0–3 h | 58 | 27.6 |
4–6 h | 91 | 43.3 |
7–9 h | 26 | 12.4 |
10+ h | 34 | 16.2 |
No response | 1 | 0.5 |
Total | 210 | 100.0 |
E-commerce Shopping | ||
Those who do | 209 | 99.5 |
Those who do not | 1 | 0.5 |
Total | 210 | 100.0 |
Number of E-Commerce Purchases (Annual) | ||
0–15 | 102 | 48.6 |
16–30 | 62 | 29.5 |
31–45 | 13 | 6.2 |
46–60 | 19 | 9.0 |
61+ | 14 | 6.7 |
Total | 210 | 100.0 |
Number of Interactions with a Chatbot on an E-Commerce Website (Annual) | ||
1 | 48 | 22.9 |
2–5 | 94 | 44.8 |
6–10 | 36 | 17.1 |
10+ | 32 | 15.2 |
Total | 210 | 100.0 |
E-commerce Websites You Use Chatbots on | ||
Trendyol | 123 | 36.72 |
Yemeksepeti | 51 | 15.2 |
n11 | 39 | 11.6 |
Hepsiburada | 39 | 11.6 |
Getir | 7 | 2.1 |
AtasunOptik | 4 | 1.2 |
VatanBilgisayar | 16 | 4.8 |
Other (please specify) | 56 | 28.7 |
Total | 335 | 100.0 |
Variable | Item | Mean | SD | Factor Loading | AVE | CR | α |
---|---|---|---|---|---|---|---|
Interaction | INT1 | 4.01 | 1.777 | 0.891 | 0.692 | 0.817 | 0.861 |
INT2 | 4.20 | 1.911 | 0.767 | ||||
Trendiness | TRE1 | 4.51 | 1.892 | 0.873 | 0.686 | 0.865 | 0.855 |
TRE2 | 3.86 | 1.827 | 0.656 | ||||
TRE3 | 4.48 | 1.887 | 0.929 | ||||
Customization | CUS1 | 3.57 | 1.84 | 0.716 | 0.664 | 0.855 | 0.861 |
CUS2 | 3.65 | 1.806 | 0.820 | ||||
CUS3 | 4.14 | 1.693 | 0.899 | ||||
Problem-solving | PRB1 | 3.81 | 1.793 | 0.778 | 0.708 | 0.879 | 0.878 |
PRB2 | 4.03 | 1.884 | 0.820 | ||||
PRB3 | 3.71 | 1.781 | 0.920 | ||||
Productivity | PRO1 | 4.03 | 1.956 | 0.895 | 0.650 | 0.880 | 0.889 |
PRO2 | 4.54 | 1.932 | 0.818 | ||||
PRO3 | 4.54 | 1.959 | 0.820 | ||||
PRO4 | 3.39 | 1.919 | 0.675 | ||||
Social & Relational Motivation | SOC1 | 2.08 | 1.69 | 0.898 | 0.798 | 0.922 | 0.921 |
SOC2 | 2.39 | 1.796 | 0.888 | ||||
SOC3 | 2.01 | 1.647 | 0.894 | ||||
Anthropomorphism | ANT1 | 3.47 | 1.556 | 0.759 | 0.547 | 0.783 | 0.783 |
ANT2 | 3.54 | 1.553 | 0.752 | ||||
ANT3 | 4.04 | 1.622 | 0.705 | ||||
Entertainment | ENT1 | 3.00 | 1.904 | 0.768 | 0.638 | 0.875 | 0.866 |
ENT2 | 3.17 | 1.951 | 0.688 | ||||
ENT3 | 2.61 | 1.744 | 0.915 | ||||
ENT4 | 2.35 | 1.657 | 0.808 | ||||
Accuracy | ACC1 | 3.50 | 1.772 | 0.811 | 0.759 | 0.904 | 0.903 |
ACC2 | 3.56 | 1.758 | 0.891 | ||||
ACC3 | 3.34 | 1.800 | 0.909 | ||||
Credibility | CRE1 | 4.37 | 1.857 | 0.807 | 0.660 | 0.853 | 0.855 |
CRE2 | 4.54 | 1.838 | 0.774 | ||||
CRE3 | 4.32 | 1.879 | 0.855 | ||||
Communication Competence | COM1 | 3.17 | 1.876 | 0.902 | 0.626 | 0.825 | 0.787 |
COM2 | 3.02 | 1.82 | 0.904 | ||||
COM3 | 4.70 | 1.961 | 0.498 | ||||
Satisfaction with chatbot usage | SAT1 | 4.06 | 1.792 | 0.956 | 0.914 | 0.977 | 0.976 |
SAT2 | 3.97 | 1.741 | 0.966 | ||||
SAT3 | 3.94 | 1.793 | 0.973 | ||||
SAT4 | 4.06 | 1.775 | 0.929 | ||||
Reuse Intention | REU1 | 4.21 | 1.803 | 0.935 | 0.685 | 0.866 | 0.904 |
REU2 | 3.18 | 1.737 | 0.744 | ||||
REU3 | 3.56 | 1.747 | 0.791 | ||||
Purchase Intention | PUR1 | 3.58 | 1.908 | 0.852 | 0.800 | 0.941 | 0.940 |
PUR2 | 3.42 | 1.896 | 0.937 | ||||
PUR3 | 3.40 | 1.902 | 0.957 | ||||
PUR4 | 3.70 | 2.015 | 0.824 |
Constructs | PUR | ANT | INT | TRE | CUS | PRB | PRO | SOC | ENT | ACC | CRE | COM | SAT | REU |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PUR | 0.894 | |||||||||||||
ANT | 0.410 | 0.739 | ||||||||||||
INT | 0.608 | 0.496 | 0.831 | |||||||||||
TRE | 0.535 | 0.348 | 0.617 | 0.828 | ||||||||||
CUS | 0.722 | 0.499 | 0.677 | 0.696 | 0.815 | |||||||||
PRB | 0.722 | 0.457 | 0.626 | 0.770 | 0.702 | 0.841 | ||||||||
PRO | 0.648 | 0.374 | 0.696 | 0.669 | 0.677 | 0.709 | 0.806 | |||||||
SOC | 0.357 | 0.197 | 0.209 | 0.141 | 0.343 | 0.352 | 0.270 | 0.893 | ||||||
ENT | 0.547 | 0.311 | 0.445 | 0.404 | 0.557 | 0.550 | 0.484 | 0.736 | 0.799 | |||||
ACC | 0.587 | 0.439 | 0.601 | 0.550 | 0.654 | 0.680 | 0.622 | 0.290 | 0.519 | 0.871 | ||||
CRE | 0.507 | 0.245 | 0.587 | 0.667 | 0.636 | 0.654 | 0.625 | 0.138 | 0.430 | 0.711 | 0.813 | |||
COM | 0.649 | 0.432 | 0.460 | 0.415 | 0.613 | 0.681 | 0.556 | 0.475 | 0.524 | 0.708 | 0.571 | 0.791 | ||
SAT | 0.600 | 0.381 | 0.714 | 0.711 | 0.604 | 0.769 | 0.718 | 0.178 | 0.452 | 0.688 | 0.711 | 0.598 | 0.956 | |
REU | 0.726 | 0.403 | 0.709 | 0.644 | 0.655 | 0.749 | 0.620 | 0.186 | 0.474 | 0.653 | 0.659 | 0.599 | 0.743 | 0.827 |
Second-Order Constructs | Factor Loading | AVE | CR | α |
---|---|---|---|---|
Chatbot marketing efforts (CME) | ||||
Interaction | 0.888 | 0.851 | 0.958 | 0.915 |
Trendiness | 0.877 | |||
Customization | 0.995 | |||
Problem-solving | 0.925 | |||
Chatbot communication quality (CCQ) | ||||
Accuracy | 0.881 | 0.674 | 0.861 | 0.858 |
Credibility | 0.778 | |||
Communication competence | 0.801 | |||
Motivation for using chatbot (MFUC) | ||||
Productivity | 0.738 | 0.643 | 0.878 | 0.718 |
Social and relational motivation | 0.843 | |||
Anthropomorphism | 0.767 | |||
Entertainment | 0.854 |
Constructs | CME | CCQ | MFCU |
---|---|---|---|
CME | 0.992 | ||
CCQ | 0.787 | 0.821 | |
MFCU | 0.654 | 0.657 | 0.802 |
Hypothesis | Standardized β | SE | t | Result |
---|---|---|---|---|
H1: Chatbot Marketing Efforts → Chatbot Communication Quality | 0.887 *** | 0.075 | 9.803 | Supported |
H2: Chatbot Communication Quality → Satisfaction with chatbot usage | 0.910 *** | 0.129 | 10.242 | Supported |
H3: Motivations for Chatbot Usage → Satisfaction with chatbot usage | −0.033 | 0.062 | 0.682 | Rejected |
H4: Satisfaction with chatbot usage → Purchase Intention | 0.790 *** | 0.060 | 12.285 | Supported |
H5: Satisfaction with chatbot usage → Reuse Intention of Chatbots | 0.939 *** | 0.042 | 23.247 | Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akdemir, D.M.; Bulut, Z.A. Business and Customer-Based Chatbot Activities: The Role of Customer Satisfaction in Online Purchase Intention and Intention to Reuse Chatbots. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 2961-2979. https://doi.org/10.3390/jtaer19040142
Akdemir DM, Bulut ZA. Business and Customer-Based Chatbot Activities: The Role of Customer Satisfaction in Online Purchase Intention and Intention to Reuse Chatbots. Journal of Theoretical and Applied Electronic Commerce Research. 2024; 19(4):2961-2979. https://doi.org/10.3390/jtaer19040142
Chicago/Turabian StyleAkdemir, Doğan Mert, and Zeki Atıl Bulut. 2024. "Business and Customer-Based Chatbot Activities: The Role of Customer Satisfaction in Online Purchase Intention and Intention to Reuse Chatbots" Journal of Theoretical and Applied Electronic Commerce Research 19, no. 4: 2961-2979. https://doi.org/10.3390/jtaer19040142
APA StyleAkdemir, D. M., & Bulut, Z. A. (2024). Business and Customer-Based Chatbot Activities: The Role of Customer Satisfaction in Online Purchase Intention and Intention to Reuse Chatbots. Journal of Theoretical and Applied Electronic Commerce Research, 19(4), 2961-2979. https://doi.org/10.3390/jtaer19040142